
AD-A267 453

RL.-TR-93-79

Final Technical ReportlIj May 1993

SIGNAL DETECTION IN CORRELATED
GAUSSIAN AND NON-GAUSSIAN RADAR
CLUTTER

Kaman Sciences Corporation

M. Rangaswamy, P. Chakravarthi, Dr. D. Weiner, Dr. L. Cai,
Dr. H. Wang, Dr. A. Ozturk

" DTIC ''

AUG 0 4 1993 U
APPROVED FOR PUBLIC RELEASE," D1S TR/BU f/ON UNLIMITED,

93-17391

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Bas&:, New York

93 8 3 098



This reporC has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the geueral public, including foreign nations.

RL-TR-93'- 7 9 hat been reviewed and is approved for publication.

APPROVED: jP.

LISA K. SLASKI
Project Engineer

FOR THE COMMANDER /

JAMES W. YOUNGBERG, Lt Ccl, USAF
Deputy Director
Surveillance and Photonics Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL ( OCTS ) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned,



REPORT DOCUMENTATION PAGE IOMBN,%7 o04"o188
PtLi 0~~ hUdi9 m iii ft b~dmdhinb MI3M temeq 1mem "w ft h'*m fw wbtVmb uww~f medf de o
gtwi rtY*fqtd fd rm dwtdi wrd t Vd rW, uhuit •n Nd" SW"M WWt f b•doi einte & &V dKw d 0

•mm Vuvw•IB k•*' elu• w .'igU huwl t Wed i •N~tt 6WY DhHUl fwi bUdi 0p• U•IPtU tll Jdtwuw

1. AGENCY USE ONLY (Loave Blank) V, REPORT DATE 1IREPORT TYPE AND DATES COVERED
May 1993 Final Aug 90 - Dec 91

4. TITLE AND SUBTITL.. 5. FUNDING NUMBERS

SIGNAL DETECTION IW CORRELATED GAUSSIAN AND C - F30602-89-C-0082,
NON-GAUSSIAN 'WAAR CLUTTER PE - 63741D Task 10

S. AUTHOR(S) PR - 364U

M. Rangaswamy, P. Chakravarthi, Dr D. Weiner, TA - 06
Dr L. Cal, Dr H. Wang, Dr A. Ozturk WU - 05

7. PERFORMING ORGANIZATION 1AE(S) AND ADDRESS (ES) 5 PERFORMING ORGANIZATION
KAMAN Sciences Corporation REPORT NUMBER
258 Genesee Streat, Suite 103
Utica NY 13502 N/A

"9. SPONSORINOGMONITORING AGENCY NAME(S) AND ADDRESS'(ES) 0. SPONSORINJONITORING
AGENCY REPORT NUMBER

Rome Laboratory (OCTS)
26 Electronic Pky
Griffiss AFB NY 13441-4514 RL-TR-93-79

11.S UPPLEMENTARYNOTES Rome Laboratory Project Engineer: Lisa Shaski/OCTS/(315) 330-4437
Authorn were employees of Syracuse University, Syracuse NY, under contract with KAMAN
Sciences Corporation. Dr Ozturk was a visiting professor at Syracuse University from
EGE Univaraffy. Izmir, Turkey,

12a. DISTRIBUTION/AVAILABILITY sTATEMENr 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(Moku,, ,.wwas)

The subject of this report is the detection of weak targets in a strong clutter
environment. Two situations arise depending on whether or not the weak targets
can be separated from the clutter. For both cases new receivers are derived
which provide significant improvement in performance over other recently proposed
techniques. This work includes development of an adaptive joint-domain space-time
processor, effective non-gaussian weak signal detectors based on s?herically
invariant random processes, and a new method for approximating the underlying
probability density function of random data which works extremely well with
only 100 samples.

14. SUBJECTTERMS Locally Optimum Detector, Spherically Invariant, 11NUMBER OFPAGES
Random Processes, Probability Density Function, Weak Signal 284

Detector, Radar, Space-Time Processing, Clutter, Non-Gaussian it PRICE CODE

17. SECURITY CLASIFICATION 11 & SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540N1 21 S-"



Executive Summary

The subject of this report is the detection of weak targets in a strong clutter environment.

Two situations arise depending upon whether or not the weak targets can be separated from

the clutter. For both cases new receivers are derived which provide significant improvement in

performance over other recently proposed techniques. This work includes development of an

adaptive joint-domain space-time processor, effective non-Gaussian weak signal detectors based

on spherically invariant random processes, and a new method for approximating the underlying

probability density function of random data which works extremely well with only 100 samples.

When the target and clutter are separable, space-time processing is effective in detecting the

target. In effect, this approach maximizes the signal-to-clutter ratio by using two-dimensional

filters on the joint spatial and Doppler spectra to isolate the target from the clutter. Furthermore,

for Gaussiau clutter, space-time processing is the optimum approach for detecting weak targets

in a strong clutter background whether or not the targets and clutter are separable.

Unfortunately, when the target and clutter spectra completely overlap, space-time processing

is ineffective in detecting weak targets. Nothing can be done to improve performance for the

Gaussian clutter case. However, for non-Gaussian clutter, effective weak signal detectors do

exist. Nevertheless, this is an area which, in spite of its importance, has received relatively little

attention. Much of this report is devoted to

1. the characterization, generation, and approximation of correlated non-

Gaussian radar clutter samples and

i



2. the design and performance of the corresponding weak signal detectors.

Many new and significant results are discussed in this report and are summarized below:

(1) An adaptive joint-domain space-time processor is derived which

not only outperforms currently proposed space-time processors

but also converges more rapidly and processes data more effi.

ciently.

(2) Spherically invariant random processes (SIRPs) are shown to be

an attractive approach to the extremely difficult problem of mod-

eling correlated non-Gaussian random variables. Many useful and

desirable properties of SIRPs are derived in a straight-forward tu-

torial manner.

(3) To make it possible to model many different types of correlated

non-Gaussian clutter (e.g.- Weibull, K-distributed, Rician, etc.)

an extensive library of SIRPs is developed.

(4) To enable computer simulation of correlated non-Gaussian radar

clutter samples, which are needed for evaluating receiver perfor-

mance, two different canonical generation schemes are derived.

(5) Since the probability distribution underlying clutter is not likely

to be known in advance, a new method for approximating the uni-

variate probability density function of random data is developed

which outperforms existing techniques while using significantly

fewer data samples.

(6) To approximate the probability distribution underlying the N cor-

related non-Gaussian radar returns received during a coherent

processing interval, the technique developed in item 5 is extended

in a simple manner to. the multivariate probability density func-

tion arising from spherically invariant random processes.

ii



(7) Weak signal receivers, known as locally optimum detectors, are

derived for correlated non-Gaussian clutter that can be approx-

imated by SIRPs. These detectors are shown to be canonical in

form and combine the conventional Gaussian receiver with the

appropriate nonlinearity.

(8) Because the locally optimum detectors are nonlinear and involve

non-Gaussian inputs, their performance must be evaluated by

Monte Carlo simulation. A technique is developed for determin-

ing the receiver thresholds that reduces by several orders of mag

nitude the number of Monte Carlo trials required.

(9) The locally optimum detector for multivariate Student-T clutter

is shown to significantly outperform the conventional Gaussian

receiver when the target and clutter spectra completely overlap.
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Chapter 1

Introduction

The subject of this report is the detection of weak targets in a strong clutter environment.

Two situations arise depending upon whether or not the weak targets can be separated from

the clutter. For both cases new receivers are derived which provide significant improvement in

performance over other recently proposed techniques. This work includes development of an

adaptive joint-domain space-time processor, effective non-Gaussian weak signal detectors based

on spherically invariant random processes, and a new method for approximating the underlying

probability density function of random data which works extremely well with only 100 samples.

Many new algorithms were developed for this purpose and resulted in extensive new software.

In a companion volume the quality of some of this software is evaluated and discussed.

Two situations arise depending upon whether or not the weak targets can be separated from

the clutter. For example, consider the situation illustrated in Figure 1.1 where the joint spatial

and Doppler spectra of the received radar samples are shown for targets T1 and T2 and a single

clutter patch. Obviously, target Ti can be separated from the clutter by means of filtering

whereas the target T2 cannot.

When the target can be separated from the clutter, performance is limited by the background

noise. Assuming a large signal-to-noise ratio, we refer to this as the strong signal case. When

the target and clutter overlap and the clutter-to-noise ratio is large, performance is limited by

the clutter. Assuming a small signal-to-clutter ratio, we refer to this case as the weak signal

case. Finally, when the clutter spectrum partially overlaps the target spectrum, performance is

limited by both the clutter and noise. We refer to this situation as the intermediate signal case.

The strong and intermediate signal cases are suitable for the adaptive joint-domain space-time
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Figure 1.1: Illustration of Target and Clutter Spectra

processor discussed in Chapter 2. The remainder of this report, Chapters 3-11, are devoted to

the solution of the weak signal case.

1.1 Adaptive Implementation of Optimum Space-Time Processing

A new adaptive algorithm, called the Joint-Domain Localized Generalized Likelihood Ratio

(JDL-GLR) detection algorithm, is presented in Chapter 2. This algorithm takes advantage of

the fact that it may be possible to separate the weak target from the strong clutter (interference)

by means of space-time processing. Specifically, space-time processing transforms the received

samples in space and time to a two-dimensional power spectral density involving both spatial

and Doppler frequencies. The spatial frequency is a function of the angle of arrival of the

radar pulse return (interference) plane waves with respect to the broadside of the antenna array

while the Doppler frequency is linearly proportional to the radial velocity of the object from

which the radar pulse is reflected (platforms from which the interference is emitted). When the

radar target's angle of arrival and/or radial velocity differs significantly from those of the clutter

(interference), it is possible to separate out the target return. System performance is then limited

primarily by the background noise. Because the clutter (interference) environment is unknown

a priori and is likely to change with time and spatial position, the algorithm must be adaptive

with a sufficiently fast convergence rate. The JDL-GLR algorithm presented in Chapter 2 is
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both data and computationally efficient and converges quickly for Gaussian random processes.

Embedded CFAR and robustness in non-Gaussian clutter (interference) are other properties of

this algorithm.

1.2 Weak Signal Detection

The algorithms presented in Chapters 3-11 were developed to handle the case for which it is

not possible to separate the target return from the clutter (interference). In other words, these

algorithms are intended to be applied only when the target and clutter (interference) spectra

overlap •!gnificantly. We refer to this situation as the weak signal problem. For this problem,

system performance is limited primarily by the clutter (interference). Several new algorithms

have been developed for the weak signal detection problem. Although these algorithms can be

used to combat both clutter and interference, for ease of discussion, the presentation focuses

only on weak signal detection in a strong clutter background. The statistics of clutter have been

observed to be both Gaussian and non-Gaussian. Because the weak signal detector for Gaussian

processes is identical to that for strong signals, only the non-Gaussian case is considered in

Chapters 3-11.

1.3 Literature Review on Spherically Invariant Random Processes

In general, the radar receiver receives N complex (or 2N quadrature component) samples from

each radar resolution cell. To develop an optimal receiver, it is necessary to have a closed form

analytical expression for the joint probability density function (PDF) of the received samples.

When the N samples are statistically independent, the joint PDF is simply the product of the

marginal PDFs. However, clutter samples are likely to be correlated. Because this correlation is

useful for canceling the clutter, it is important that the correlation be modeled. Unfortunately,

when the received samples are correlated and non-Gaussian, there are no unique analytical

expressions for their joint PDF. A search of the mathematical and signal processing literature

reveals that the theory of spherically invariant random processes (SIRP) provides a powerful

mechanism for obtaining the joint PDF of N correlated non-Gaussian random variables. The

literature search on SIRPs is reviewed in Chapter 3.

1.4 Radar Clutter Modeling Using SIRPs

As mentioned previously, the clutter is unknown apriori and is likely to change with time and

spatial position. Consequently, it is necessary to continuously monitor the environment in order
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to determine the statistical nature of the clutter. To be able to model as many different types

F clutter as possible, a large library of multivariate non-Gaussian PDFs is necessary. Based

.a the properties of SIRPs, a library of joint PDFs is developed in Chapter 4 for correlated

non-Gaussian random variables.

1.5 Computer Generation of Simulated Radar Clutter Character-

ized as SIRPs

When dealing with non-Gaussian random processes, it is usually difficult , if not impossible

"to analytically evaluate system performance. Performance must then be determined by means

of computer simulation. Two canonical procedures are presented in Chapter 5 for genera ing

correlated non-Gaussian random variables which can be used to simulate samples from SIRPs.

1.6 A New Method for Univariate Distribution Approximation

Because the clutter environment is unknown a priori, the PDF underlying a set of N samples

must be approximated using measured samples from the environment. Chapter 6 describes an

algorithm for analyzing univariate random data. This algorithm has two modes of operation.In

the first mode, the algorithm performs a goodness-of-fit test. Specifically, the test determines,

to a desired confidence level, whether random data is statistically consistent with a specified

probability distribution. In the second mode of operation, the algorithm approximates the PDF

underlying the random data. In particular, by analyzing the random data and without any a

priori knowledge, the algorithm identifies from a stored library of PDFs that density function

which best approximates the data. Estimates of the scale, location, and shape parameters of the

PDF are provided by the algorithm. Of particular note is the observation that the algorithm

typically works well with small sample sizes of between 50 and 100 samples.

1.7 Distribution Approximation of Radar Clutter by SIRPs

As noted earlier, the N complex samples received from each radar resolution cell are character-

ized by a multivariate PDF. For SIRPs, it is shown in Chapter 7 that the multivariate distribution

approximation problem can be reduced to an equivalent univariate distribution approximation

problem. Consequently, the algorithm of Chapter 6 is also used in Chapter 7 to approximate the

joint PDF underlying N correlated non-Gaussian clutter samples provided they are generated

from an SIRP.
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1.8 Weak Signal Detection

The weak signal detection problem is developed in Chapter 8. Problems encountered in the

optimum likelihood ratio test (LRI) are pointed out. The concept of the locally optimum detector

(LOD) is introduced as a practical detector structure for the weak signal problem.

1.9 The Locally Optinmum Detector

The LOD is derived in Chapter 9 using two different approaches. Both deterministic and

random target signals are considered. It is shown that the LOD determines whether a target is

present or not by comparing a statistic computed from the data to a set threshold. The receiver

structures are specialized to the case Aor which the clutter plus noise can be approximated as an

SIRP.

1.10 Determining Thresholds for the Locally Optimum Detector

Not only is the clutter assumed to be non-Gaussian, the LOD receiver structure is non-linear.

As a result, system performance must be determined by means of computer simulation. The

threshold is conventionally determined through a Monte Carlo procedure. Unfortunately, the

number of trials is inversely proportional to the false alarm probability PF. For example, when

PF = 10', a minimum of ten million trials need to be generated. To avoid carrying out so

many trials, a new technique, based on extreme value theory is presented in Chapter 10. It is

demonstrated that fairly accuiate thresholds can be determined for false alarm probabilities as

small as 10-" with as few as 5000-10,000 trials.

1.11 Performance of the LOD for the Multivariate Student-T Dis-

tribution

Assuming that the clutter plus noise can be approximated by the multivariate Student-T

distribution, the LOD is developed in Chapter 11 for the weak signal detection problem. The

system performance is evaluated by means of computer simulation. When PF is less than or

equal to 102, it is shown that the Gaussian receiver requires a sign~al to clutter ratio of 10-20

dB larger than that required by the LOD for the same values of PD and PF.
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Chapter 2

Adaptive Implementation of Optimum

Space-Time Processing

2.1 Introduction

It is highly desirable for an airborne surveillance radar system to have the optimum or near

optimum performance for detection of weak targets in strong clutter/interference of complicated

angle-Doppler spectrum. As the clutter/interference spectrum is unknown to the system and the

clutter/interference environment may be varying in both time and space, i.e., nonstationary and

nonhomogeneous, the signal processor must be adaptive with a sufficiently fast convergence rate.

Consider a system which employs N. spatial channels (subarrays of a phased-array) and has

Ni pulses in its Coherent Processing Interval (CPI). The optimum processor, or the Neyinan-

Pearson's likelihood ratio test for such a system, is well developed in [1] under the assumption

of Gaussian clutter/interference. This processor, to be referred to as the joint-domain optimum

processor in this paper, has the highest performance potential which can be approached by adap-

tive algorithms such as the Sample-Matrix- Inversion (SMI) [2], the Generalized Likelihood Ratio

(GLR) [3, 4], and the Modified SMI [5, 6]. To approach this detection performance potential,

however, these algorithms require that the training data set (i.e., the so-called secondary data

set) have at least 2NNt -,' 3NNt independent and identically distributed (iid) data vectors.

Obviously such a training-data size requirement is impractical even for moderate N. and Nt, as

the environment in which an airborne surveillance system operates is usually severely nonsta-

tionary and nonhomogeneous. Besides, the computation load can easily become unbearable in

practice Eince it is proportional to (N.Nt)3 . One should also note that lowering N. and Nt is not
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necessarily desirable in practice as the performance potential critically depends on them if the

angle-Doppler spectrum of the clutter/interference is complicated.

A much more popular approach to space-time processing can be classified as cascade processing

with either the beamformer-Doppler processor configuration or the opposite order configuration.

In this paper the former will be called the Space-time (S- T) configuration and the latter the Time-

Space (T-S) configuration. Obviously the optimum detection theory can be applied separately

to both spatial and temporal parts of both S-T and T-S configurations, together with various

adaptive algorithms available for each part. Of course, the convergence rate and computation

load problems associated with adaptive implementation of the joint-domain optimum processor

also appear with the cascade configurations, only to a lesser extent. When the convergence

does occur, the performance of an adaptive implementation with the S-T (T-S) configuration

should approach that of the optimum processor with the same configuration. Cascade processing,

especially the S-T configuration, has been so popular in recent years that it seemS to replace the

joint-domain processor in the airborne surveillance application. Moreover, arguments can often

be heard about which cascade configuration has higher detection performance potential.

The first objective of this chapter is to show that

(1) neither of the two cascade configurations is better than the other, and

(2) the performance potential of both cascade configurations can fall far below that of the

joint-domain optimum processor. In other words, we show that if one wants to approach the

highest performance potential offered by the joint-domain optimum processor, both cascade

configurations should be avoided.

As pointed out earlier in this section, it is diffici , in practice to approach the performance

potential of the joint-domain optimum processor with the straightforward application of adaptive

algorithms such as the SMI, Modified SMI, GLR, etc., especially in a severely nonstationary and

nonhomogeneous environment, even if the heavy real-time computation could become affordable.

Therefore, the second objective of this chapter is to develop a new adaptive algorithm for the

joint-domain optimum processor, which should be much more data-efficient and computationally

effici-nt than the aforementioned ones. This new algorithm is an extension of our recent work

reported in [7, 8] for adaptive Doppler-domain processing.

This chapter is organized as follows. We will first formulate the data model in Section 2.2.

In Section 2.3 we will compare the performance potentials of the cascade and joint-domain
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processors. The new adaptive algorithm for the joint-domain optimum processor is presented

in Section 2.4, together with its performance analysis and comparison. Finally, Section 2.5

summarizes the conclusions with some discussion of related issues.

2.2 Data Modeling

Consider a narrowband antenna array with N, spatial channels (subarrays). Each channel

receives Nt data samples corresponding to the return of a train of Nt coherent pulses for a given

range cell. Let the column vector xi,,,, N, x 1, represent the Nt baseband complex (I/Q) data

samples of the nth channel. The data matrix X, Nt x N., is defined by

T

xai2
xT

X = [Xtil Xt2 ... XtN.]= 2(2.1)

:- .T

where "T" denotes the transpose, and the row vectors of X, xTI nt 1 1,. Ni, are the
"snapshots" obtained along the spatial channels.

Under the signal-absence hypothesis H0, the data matrix X consists of clutter/interference

and noise components only, i.e.,

X=C+N (2.2)

where C and N represent the clutter/interference and noise, respectively , and are assumed to be

independent. Under the signal-presence hypothesis H1, a target signal component also appears

in the data matrix, i.e.,

X = aS + C + N (2.3)

where a is an unknown complex constant representing the amplitude of the signal and S the

signal matrix of a known form. We call X the primary data set as it is from the range cell under

the hypothesis test.

For simplicity of discussion only, we assume that the spatial channels are colinear, identical,

omni-directional, and equally spaced with spacing d; and that the pulses of the coherent pulse

train are identical with a constant Pulse Repetition Frequency (PRF). Under these assumptions,
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the ntnth entry of the signal matrix S has the following form

s(nt, n.) = exp[i2r(nt - 1) 2v + i2sr(n. - 1) inO, (2.4),APRF A 2rn k- -J 24

where v is the radial velocity of the target, 0 the direction of arrival of the target-return planewave

with respect to the broadside of the array, and A the radar wavelength. Denoting

_2v

fat = 2PRF (2.5)

as the "normalized Doppler frequency" of the target signal, and

dsin 0f08° A (2,.6)

as the "spatial frequency", S can be expressed by

TS = S, 0 St (2.7)

where ® is the Kronecker product, and

st = [1 exp(i2rf~t) ... exp(i27r(Nt - 1)for)]T (2.8)

and

S= [1 exp(i27rf..) ... exp(i2r(No _ l)f..)IT (2.9)

are the signal vectors in time and space domains, respectively. We assume that the parameters

PRF, A, and d have been properly chosen so that fLt and faa are confined within [--0.5, 0.5].

To statistically characterize the clutter/interference and noise components C and N, we in-

troduce the notation Vec(.) for a matrix operation that stacks the columns of a matrix under

each other to form a new column vector. We assume that the NtN° x 1 vector Vec(C + N) has a

multivariate complex Gaussian distribution with zero mean and a covariance matrix R. Under

this assumption, xtn,, n, = 1, 2 ,..., N, and Xsntflg = 1,2,..., Nt will also be complex zero-mean

Gaussian. Let Rt and R, be the covariance matrices of Xt,, and xan,, respectively. It is easy to

see that R, and R, are the submatrices of R.

In the cases of unknown clutter/interference statistics, the data from the adjacent range cells,

conventionally referred to as the secondary data set, are also needed for estimating the covariance
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of clutter/interference. Under both HI and H0 , they consist of the clutter/interference and noise

components only, and they are denoted by

Yk = Ck +Nk, N×x N., k = 1,2,...,K (2.10)

where K is the number of range cells available. We assume that Yk, k = 1, 2, ...K and X are

independent of each other and bear the same clutter/interference statistics, i.e., Vec(Yk) should

also have a complex-Gaussian distribution with zero mean and a covariance matrix R.

2.3 Difference among The Performance Potentials of The Cascade

and Joint-Domain Processors

We will compare the detection performance potentials of the two cascade configurations and

the joint-domain processor under the assumption that the clutter/interference-plus-noise covari-

ance matrix is known. With the known covariance, the Space-Time (S-T) configuration is the

N~th-order optimum spatial processor followed by the Ntth-order optimum temporal (Doppler)

processor, the Time-Space(T-S) configuration takes the opposite cascade, and the joint-domain

processor is the NeNtth-order optimum processor. Applying the result in [1] to the above three,

we list the optimum weight vectors below for easy reference.

The S-T Configuration: we have

wss-t = cs,,,-AR-'s° (2.11)

for the spatial domain weight vector, and

wist = ct,,_t[(wH°_. 0 I)R(w.,.°t 0 I)]-Ist (2.12)

for the temporal domain weight vector, where c,.,.-t and ct,.-t are constants. We recall that R,

and Rt are the covariance matrices for the rows and columns of X, respectively; and s, and st

are specified by Eq.(2.8) and Eq.(2.9). The test statistic is

718-1= wts stXWs,-t. (2.13)
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The T-S Configuration: we have

wt=-A - ctt-.R7'st (2.14)

and

= Ca,t_.[(I® W(9 _sH)R(I ® w,,,_.)]-1s (2.15)

for the temporal and spatial weight vectors, respectively. The test statistic is

Ht w_,Xw*,,_. (2.16)

The joint-domain optimum processor: the whole set of the data is processed all together by

an optimum weight vector as
H71 = w c (2.17)

where wj is

WJ = cjR- 1  (2.18)

with cj being a constant scalar,

One should note that the overall weight vectors for the two cascade configurations can have

the following equivalent expressions

wo-t= W,.-t ® Wt,.-t (2.19)

and

Wt- = W8,t. ® w,t-.. (2.20)

The squared magnitude of the test statistic is compared with a chosen threshold 770 which is

determined by the required probability of false alarm P1 as

71o = -lnPf; (2.21)

and the signal presence is claimed if the test statistic surpasses the threshold.

From the result in [1], the probability of detection of the above three processors has the same
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form below with their own weight vectors, i.e., w,-., w1 -,, and wj to replace w therein

Pd - 1 - exp(--y)0 exp(-t)Io(2V'ji)dt (2.22)

where •. wHssHw
-Ha wH---Rw (2.23)

and Io(.) denotes the zero-th order modified Bessel function of the first kind.

The key to achieving the objective of the comparison easily is to identify few typical cases,

from the vast number of varieties of clutter/interference conditions, which are also simple enough

for numerical evaluation. To do so, the following specifics are necessary.

(1) The covariance matrix of the receiver noise is given by

E(Vec(N)Vec(N)H) = n•I (2.24)

with I being the Nt.I x AN,, identity matrix.

(2) The clutter/interference is assumed to have a two-dimension p(,wer

spectral density of the Gaussian shape centered at [fca, fC.]
S1 __f_2 f_ f__)_

P'(ft, fM) = a2, exp[-( (t - fa2 , + Y. - h.) 2 ] (v.25)
27ra7ftaff, 2crf ao2

where ft and f, are the normalized Doppler frequency and spatial fre-

quency, respectively, and aft and a0f the parameters controlling the

spread of the clutter/ interference spectrum. The separation between

the signal and the center of the clutter/ interference spectrum is de-

noted by Aft = f~t - ft and Af, = f,. - fI..

(3) The covariance of the clutter/interference corresponding to the above

spectrum is then found to be

E(Vec(C)Vec(C)H) =uC, 0 Ct (2.26)
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where C, and C, are Toeplitz matrices specified by

Ct = Toeplitz{[1 e-(' -I)2 Af .. e-2(frU.I(NI))-i(N -l)2$ce]},

(2.27)

and

C8 = 'Ibeplitz{[1 e-2(1roJ8)2 -i2c•1 .... e-1("'(N"-)) 2 - i(No -1)2wfa]},

(2.28)

respectively. It is easy to verify that (1) and (3) will lead to Rt =

orC + alI and R. = a•Co + ,•I.

We define the clutter/interference-to-noise-ratio (INR) and signal-to-clutter/interference-plus-

noise-ratio (SINR) by

INR (2.29)

and
SINR - a12

SINR= (2 (2.30)

Three simple cases are identified below in each of which at least one of the cascade configura-

tions suffers severe performance degradation, i.e., significantly departing from the joint-domain

optimum.

Case 1. The signal and interference are "well" separated in the angle domain (in the sense

that Atf0 > 1/N,) but close to each other in the Doppler domain (Aft < l/Nt). This situation is

shown in the subplot in Fig. 2.1. The detection performance vs. SINR for the three processors

are plotted in Fig. 2.1 with INR-=40 dB and P1f = 10- The S-T configuration shows almost

the same performance potential as the joint-domain optimum in this special case, while the

performance loss for the T-S configuration becomec significantly large.

Case 2. The signal and interference are "well" separated in the Doppler domain but closc to

each other in the angle domain, as indicated by the subplot in Fig. 2.2. The T-S configuration

is now close to the joint-domain optimum while the S-T configuration departs significantly.

Case 3. The clutter/interference spectrum has two peaks with one close to the signal in the

angle domain while the other in the Doppler domain. In this case both cascade configurations

fail to approach the joint-domain optimum, as shown in Fig. 2.3.

The above three cases are typical in the sense that we can draw from them the following
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Figure 2.1 Performance comparison of the three processing configurations: Case 1.
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conclusions:

(1) neither of the two cascade configurations is better than the other, and

(2) the performance potential of both cascade configurations can fall far below that of the

joint-domain optimum processor.

Intuitively the above conclusions are also well justified. The T-S configuration in Case 1

suppresses the signal as well as the clutter/interference as they have little separation in the

Doppler frequency domain, so does the S-T configuration in Case 2 in the angle domain. As both

Case 1 and Case 2 can appear in practical situations without apriori knowledge, preselection of

either cascade configuration is thus not appropriate. In Case 3 the signal and clutter/interference

have little separation in either of the two domains, which results in the failure of both cascade

configurations. However, the separation in the joint domain in Case 3 is still sufficiently large to

lead to the success of joint-domain optimum processor. As an airborne system has to deal with

clutter/interference having both angle and Doppler spectral spread, it is thus important to make

full use of the signal-clutter/interference separation, which cannot always be achieved by either

of the two cascade configurations.

Although our study so far in this chapter is centered around the detection performance poten-

tials, i.e., under the assumption of known clutter/interference statistics, it is sufficient for us to

direct our attention only to the adaptive implementation of the joint-domain optimum processor,

since the two cascade configurations have been shown to have limited potentials. This will be

the focus of the remaining part of this chapter. Before we proceed, we should point out that,

in addition to the problem of limited potentials, the two cascade configurations may have other

serious problems of practical importance which are associated with their adaptive implementa-

tions, e.g., the difficulty to achieve a high-quality Constant False Alarm Rate (CFAR). This issue

will be briefly discussed later in Section 2.5 to preserve the continuity of our main course.

2.4 The Joint-Domain Localized GLR Algorithm

As pointed out in the introduction, the straightforward application of available adaptive algo-

rithms such as the SMI, Modified SMI, and GLR, etc., has considerable difficulty to approach

the joint-domain optimum processor in practice, especially in severely nonstationary and non-

homogeneous environments. Our goal here is to develop an adaptive implementation which is

more data-efficient (in the sense of faster convergence/requiring fewer training data) as well as

more computationally efficient. In addition, it is highly desirable in practice to have the adap-

17



tive algorithm possess an embedded CFAR feature and a low sensitivity to the deviation of the

clutter/interference distribution from the assumed Gaussian.

To achieve the above goal we will follow the idea of localized adaptive processing as presented

in [7, 8] for adaptive MTD. Although this idea is similar to that of beam-space processing in

[9, 10, 11] under the term of partially adaptive array processing, the work in [7, 8] distinguishes

itself from the previous study on beam-space processing in the following ways. References [7, 8]

are the first to point out that for the cases of the limited training-data size the use of localized

adaptive processing is almost mandatory, and they have shown that localized adaptive processing

can actually outperform fully adaptive processing in nonstationary and nonhomogeneous envi-

ronments. Furthermore, References [7, 8] are also the first to study localized adaptive processing

with the detection performance measure, which is of course the primary concern of surveillance

systems. In contrast, the previous work on beam-space processing focuses on the steady state

performance and uses the signal estimation performance measure. As the primary concern of

this paper is again detection in severely nonstationary and nonhomogeneous environments, it

is natural to follow the work in [7, 8]. Of course, the extension represents a nontrivial task as

indicated by the complexity of the joint angle- Doppler domain.

As discussed in [7, 8], the localized processing idea can be applied with a variety of adaptive

algorithms such as the SMI, Modified SMI, and GLR. We will again pick up the GLR. because

it offers the desirable embedded CFAR feature as well as possesses the desirable robustness in

non-Gaussian clutter/interference [5, 6]. Hence, the new algorithm presented in this section will

be called the Joint-Domain Localized GLR (JDL-GLR).

2.4.1 The JDL-GLR Principle

Figure 2.4 illustrates the principle of the JDL-GLR processor we propose. The data in the

space-time domain, X, Nt x N8 is first transformed to the angle-Doppler domain. This multi-

dimensional transform should be invertible to avoid any information loss, and it can be done

most conveniently via the standard two-dimensional DFT (which is linear and orthogonal) under

the assumption made in Section 2.2 for the spatial channels and pulse train. One should note

that the gaussianarity assumed for X will not be affected if the transformation is linear. The

angle-Doppler domain data matrix X, Nt x N,, represents the data at the Nt Doppler-bins and

N0 angle-bins of the range cell under the hypothesis test. The same transform is also performed

on the secondary data Yk, k = 1,2, ... , K, where K is the number of adjacent iid cells, to obtain
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the angle-Doppler domain secondary data Yk, Nt x N0, k = 1, 2, .. ", K.

In practice, only the few angle-bins covering the angle section centered at the broadside of the

array (i.e., around the look direction where most of the transmitted energy is contained) need

to be tested, while at most all Doppler-bins should be tested as the target Doppler frequency

shift is unknown to the processor. Let N.0 be the number of angle-bins of interest. The NAt x N.

bins to be tested will be divided into L groups, each of which contains N,0 angle-bins and a

small number of adjacent Doppler-bins. An example for this grouping is given in Fig. 2.5 where

Nt = 24, N. = 12, and N~o = 3. We note that the number of Doppler-bins in each group needs

not be the same and that some overlap can also be justified. The purpose of dividing along the

Doppler axis is to avoid the use of an adaptive processor with large degrees of freedom, which

demands a large training-data set as well as a large amount of computation. This opportunity

of "divide-and-conquer" is, of course, made available by the multidimensional transformation

from the space-time data domain to the angle-Doppler domain, which decouples the degrees of

freedom necessary for handling complicated clutter/interference, from the number of data points

to be processed. Based on our experience gained from the work in [7, 8), the number of bins in

each group is expected to have only minor influence on the detection performance and should

be in the range of 2 x No -, 4 x No in general. The angle-Doppler domain secondary data

Yk, k = 1,2,..., K should be grouped in the same way.

Let Na be the number of Doppler-bins and N1 = NtI x No the total number of angle-Doppler

bins in the /th group. An Nith-order GLR processor will perform the threshold detection on the

NI bins of the 1 th group with the test statistic

IVec(S(l) )HfVlVec(X,)I HI

Vec(SS!),)HRtlVeC(,SM)[1 + Vec(x')7-'Vec(X1 )] 1>o

n = 1,2, ..., NtI m= 1,$2, ..., N,0  (2.31)

where
K

=tl E Vec(yIk)Vec(yIk)H, (2.32)
k=I

and 6,(0,, N,- x Noo, is the signal-steering matrix in the angle-Doppler domain for the ninth bin

of the lth GLR. For a uniform PRF and array spacing, it is easy to see that .5() has all its

entries equal to zero except the ninth one which is VN-N.. We note that the threshold q()o need

not be the same across the L groups as evidenced in Subsection 2.4.2 below.
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2.4.2 The JDL-GLR Detection Performance

The detection performance of the original GLR in Gaussian clutter/interference is given in

[3, 41 with deterministic modeling and in [12] with stochastic target modeling. As for the Doppler

domain localized GLR of [7, 8], it is straightforward to extend the results in [3, 4, 12] to obtain

the probabilities of detection and false alarm, Pd and Pf, of the JDL-GLR with both target

models. Below we just list the results for the case of non-fluctuating targets with the trivial

derivation omitted.

The probability of detection at the ninth bin of the lth GLR is found to be

pd(n, m) = j P(l(n,rn)f() (p)dp (2.33)

where

I _1- (1- _(L))KN,+I K-N,+( K- N + 1

f(i)(p) = (K)! -N(.

(K - N, + 1)!(N, -2)p'-+(1 )N2,(.)

and

-- ,--1 [ ()#H - ( 1)

-e _-•1 Vec(S,•)R7 , E Vec(S-7), (2.36)

S• ~with "R. being the covariance matrix of Vec(Xi').

. _ The probability of false alarm for all bins in the/lth GLR is given by

-pQ') - (1 - r F())K''NL+_. (2.37)

Obviously the probability of false alarm can be made equal across the L groups by choosing

different r/(/), I = 1,2, .. ,, L. Eq.(2.37) also clearly in dicates that, like the original GLR and ýhe

Doppler-domain localized GLR, the JDL-GLR has the "integrated/embedded" CFAR feature as

Ap), I = 1, 2, ... , L do not depend on the covariance of the clutter/interference.
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2.4.3 Detection Performance Comparison

Although the convergence-rate advantage of the JDL-GLR can be seen intuitively from tile

fact that the localized GLR's have much lower degrees of freedom than a high-order GLR directly

applied to the space-time domain data, the numerical example below should demonstrate this

advantage clearly.

Consider a system with N, = 12 and Ni = 24. The clutter/interference is assumed to have

the two-dimensional multipeak Gaussian-shaped power spectrum density (psd) as shown in Fig.

2.6. For convenience of reference we have also indicated the center locations of this multipeak

spectrum in Fig. 2.5. The exact expression of this psd is given by

Pý (f IfM)0= 2 1 -exp[-( - fctd)2  (f. -2 fc+d) 2  (2.38)P*(f~ d°) =__• 'd2ro'f~ol t x-t-(( 2-o• + 2"af' a ](.8

where acd is the power of the dth component. Obviously, the total clutter/interference powe.,oaC2

is 6
oC d'Oc (2.39)

d=1

We set 0r2 = a 2 = 01 2 = a = = au 3/1O , INR=50, and SNR=OdB which gives SINR

•-50dB. The thresholds for the processors to be compared are such that every processor has

a probability of false alarm P1 = 10- at each tested bin. We assume that there are K = 24

adjacent cells from which the iid secondary data set is obtained.

Consider the following five processors:

(1) the joint-domain optimal,

(2) the JDL-GLR with L = 7 localized GLR processors with their

coverage shown in Fig. 2.5,

(3) the T-S configuration with the optimal processor for each part,

(4) the S-T configuration with the optima' processor for each part,

and

(5) a conventional beamformer followed by the optimal temporal pro-

cessor (i.e., the optimal MTI).
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Figure 2.6. 'Iwo dimensional power spectral density for the clutter/interference used

in the example.
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We note that with N, = 12, Nt = 24 but; K = 24 only, any straightforward adaptive imple-

mentation of the joint-domain optimal, any adaptive processor with the S-T configuration, and

any adaptive processor with the T-S configuration will fail to deliver an acceptable detection

performance for this example since K = 24 is too small with respect to their degrees of freedom.

Therefore, these adaptive processors are excluded from the above list for detailed comparison.

Fig. 2.7 shows the probability of detection of the five processors listed at the 6th angle bin

which is the assumed angle of arrival of the target signal. Obviously, the JDL-GLR is the only

one that approaches the joint-domain optimal, except at few bins adjacent to the center of the

strongest clutter/interference spectrum component. The poor performance of the two optimal

cascade configurations should not be a surprise from the discussion in Section 2.3. The fact shown

in Fig. 2.7 that the ad. hoc processor of No. 5 can outperform them (especially the optimal S-T

configuration) is also a strong evidence that the optimnality does not alway- mean much with a

wrong configuration. Of course, the poorest performance of the optimal S-T configuration is due

to the fact that the optimal spatial part of processing nulls the clutter/interference as well as the

target signal. Finally, we comment that a CFAR loss is inevitably associated with any adaptive

implementation of the four optimal/partially optimal processor in Fig. 2.7, while the embedded

CFAR feature of the JDL-GLR makes any other additional CFAR processing unnecessary.
2.4.4 Other Features of JDL-GLR

The computation advantage of the JDL-GLR is clear. Recall that the N-th order GLR has a

computation load proportional to N 3 . Assume that each localized GLR spans three angle-bins

and four Doppler bins and that Nt/4 localized GLR are required. This leads to a computation

load proportional to (Nt/4)(3 x 4)3 = 432Nt for the JDL-GLR. With a load of Nt3N,3 for the

straightforward application of the GLR to the space-time domain data, the JDL-GLR will show

a computation advantage when Nt > 4 and N, > 3. For large Nt and N, the JDL-GLR offers i,

computation load reduction by a factor of

S= NN,3/432. (2.40)

For the example of Ni = 24 and N, = 12 in this section, the JDL-GLR's computation load

is only 1/2304 of that for the straightforward application of the GLR (or SMI) to the space-

time domain data. Like the Doppler-domain localized GLR in [7, 8], the JDL-GLR can further

reduce its computation load via deleting the localized GLR processors for the region where the
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detection performance improvement is unnecessary or impossible. This can be done when somne

upriori information is available about the power concentration of the clutter/interference in the

angle-Doppler domain. Furthermore, the realization of the JDL-GLR benefits from the available

parallel processing techniques as its localized GLRs all opcrate in pedrallel.

Since the robustness feature in non-Gaussian clutter/interference resides with the GIR proces-

sor which will not be affected by the linear transformation, the JDL-GLR is expected to maintain

its robustness. Computationally intensive simulation is being conducted to confirm this feature

and the result will be published separately [13].

2.5 Conclusions and Discussion

This chapter shows:

(1) neither of the two cascade configurations is better than the other;

(2) the performance potential of both cascade configurations can fall far below that of the

joint-domain optimum processor; and

(3) the Joint-Domain Localized GLR algorithm (JDL-GLR) offers an attractive solution to

the problem of approaching the performance potential of the joint-domain optimum processor of

a high order (N. x Nt) with a fast convergence rate and high computation efficiency, together

with such highly desirable features as the embedded CFAR and robustness in non-Gaussian

clutter/interference.

Finally, we would like to point out that both cascade configurations may have considerable

difficulty to achieve a high quality CFAR in practice when both spatial and temporal parts are

adaptive. This is because of tle random modulation introduced by the adaptive algorithm for

the early part of the cascaded two parts. The problem may become more severe in highly non-

stationary and nonhomogeneous environments where there is a shortage of a sufficient amount

of iid training data to smooth out the extra random modulation. In contrast, the JDL-GLtR

presented in this chapter is t'ee of such random modulation and can maintain its CFAR per-

formance with a much smallei amount of iid training data. Simulation-based comparison of the

CFAR performance of adaptive spatial-temporal processors, can be found in [13].
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"Chapter 3

Literature Review on Spherically

Invariant Random Processes

3.1 Introduction

We present an overview of the literature as it pertains to the modeling of radar clutter by

spherically invariant random processes. In addition, relevant mathematical preliminaries are

presented in this chapter. When a radar transmits a signal, the received echo may consist of

returns from one or more targets, buildings, trees, water, land and weather depending on the en-

vironment, The target returns contribute to the desired signal while the other returns contribute

to the clutter. Many investigators [14, 15, 16, 171 have reported experimental measurements

for which the clutter probability density function has an extended tail. The extended tail gives

rise to relatively large probabilities of false alarm. The Gaussian model for the clutter fails to

predict this behavior. Two approaches have been used to explain the non-Gaussian behavior.

One of them is based on the fact that the assumptions under the central limit theorem (CLT)

may fail. The other approach is based on the nonstatienary reflectivity properties of the scanned

areas. In any event, non-Gaussian models for the univariate (marginal) clutter PDF have been

proposed. Commonly reported marginal non-Gaussian PDFs for the clutter are Weibull [14],

Log-normal [18, 19] and K-distributions [16, 20, 15]. Second order statistics for these models

have been reported in terms of autocorrelation functions or power spectral densities [21, 17].

The Weibull [14] and Log-normal [15] models for radar clutter are primarily based on empirical

studies, while the K-distribution has been shown to have physical significance [22, 15] in that

the observed statistical properties can be related to the electromagnetic and geometric factors
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pertaining to the scattering surface. Computer simulation schemes for Weibull and Log-normal

clutter based on the univariate PDFs and correlation functions have been developed in [23] and

[24], respectively. Extension of the Weibull and Log-normal and K-distributed clutter models for

coherent radar processing have been developed in [25, 18, 26] respectively.

Statistical characterization of the clutter is necessary in order to obtain the optimal radar signal

processor. Usually, radars process N pulses at a time. A complete statistical characterization

of the clutter requires the specification of the joint probability density function (PDF) of the

N samples. When the pulse returns are statistically independent, the joint PDF is simply the

product of the marginal PDFs. However, the clutter can be highly correlated. In fact, the

correlation between samples is useful in canceling the clutter. Consequently, it is desirable to

include the correlation information in the multivariate PDF. For non-Gaussian processes this

can be done in more than one way. The theory of spherically invariant random processes (SIRP)

provides a powerful mechanism for obtaining the joint PDF of the N correlated non-Gaussian

random variables. Applications for the theory of SIRPs can be found in the problem of random

flights [27], signal detection and estimation problems in communication theory [28, 29], speech

signal processing [30, 31], radar clutter modeling and simulation [32, 26, 33, 34, 35]. The following

sections provide a brief overview of literature on the theory of SIRPs.

3.2 Definitions

In this section we present certain definitions and mathematical preliminaries pertaining to the

theory of SIRPs. A random vector Y = [Y1, Y2, ... ,YN]T is said to be a spherically invariant

random vector (SIRV) if its PDF has the form

fy(y) = kEL12-hN[(y - b)TE-I(y - b)] (3.1)

where k is a normalization chosen so that the volume under the curve of the PDF is unity, b is a N

by 1 vector, E is a N by N non-negative definite matrix, and hN(.) is a one dimensional, positive,

real valued monotonically decreasing function. Note that the PDF of an SIRV is elliptically

symmetric (i.e., constant contours of fy(y) are composed of ellipses). If every random vector

obtained by sampling a random process y(t) is a spherically invariant random vector, regardless

of the sampling instants or the number of samples, then the process y(t) is defined to be a

spherically invariant random proces., (SIRP).

Kingman [27] introduced the definition of spherically symmetric random vectors (SSRV). In
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particular, a random vector X = (X1, X 2 , ... XN]T is said to be spherically symmetric provided

its PDF has the form

fx(x) = khN[(z• + X2+ ... + X2)½] = khN (xTx) (3.2)

where hN(.) is an arbitrary, non-negative, monotonically decreasing radial function of dimension

N and k is a normalization constant chosen so that the volume under the curve of the PDF

is unity. The subscript N is used to emphasize that we are dealing with N random variables.

Throughout the manuscript, it is assumed that the PDF of a random vector is the joint PDF of

its components. Equivalently, if w = [WI, W2, ... ,wN]T', the characteristic function of the SSRV

X defined by Ox(w) = E[exp(jwTx)], has the form

-X(o) -- gN[(W2 + W22 +... + W2N)½] (3.3)

where gN(.) is a non-negative conjugate symmetric function which is magnitude integrable. An

SSRV is a special case of an SIRV, arising from eq (3.1) when b = 0 and E = I where I is the

identity matrix. In Appendix A, we prove that the characteristic function of an SSRV is also

spherically symmetric.

3.3 Characterization of SIRPs

In this section we present some important theorems that help us to characterize the PDF of a

SIRV. The work of Yao [28] and Kingman [36] gave rise to a representation theorem for SSRVs.

The representation theorem can be stated as follows.

Theorem 1 If a random vector X = [X1 , X 2 , ... XN]T is an SSRV for any N, then there exists

a non-negative random variable T such that the random variables XA, (i = 1,2,... N) conditioned

on T = t are independent, identically distributed, Gaussian random variables with zero mean and

variance equal to 2t.

Proof: By definition, the characteristic function of X is

.. x(w) = E[exp(jw TX)] (3.4)

-f=_ . .. fL exp(jw T x)fx(x)dx.
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The PDF on the random variable T is introduced by noting that

fx(x) = f! fX.T(x, t)dt (3.5)

= ff. fXIT(Xlt)fT(t)dt.

Substituting into the expression for the characteristic function and interchanging the order of

integration we obtain

Ox(W) = L 'XIT(W, t)f()dt (3.6)

where

$XIT(W, 0) = CO. L0 eXP(W T X)fXgT(XIt)dx. (3.7)

Since X is an SSRV for any N, its characteristic function has the form of eq (3.3). This requires

that *XIT(W, t) also be a function of (w2 + W22 + + wN,) for any choice of N. The only

characteristic function having this property [36] is

- xj,(W, t) = exp[-t(wj + W22 + W)] (3.8)

where the conditional PDF of X, given T = t, is recognized to be multivariate Gaussian, with

Xj, (i = 1, '21, ... , N) being statistically independent identically distributed, zero mean Gaussian

random variables with variance 2t. Because the variance equals 2t, T must be a non-negative

random variable. This establishes the theorem. Note that the theorem does not give any physical

significance for T. Neither does it reveal how to determine fT(t).

The representation theorem for SSRVs allows us to write the random vector X as a product of

a Gaussian random vector Z having zero mean and identity covariance matrix and a non-negative

random vaiable S = ' with PDF fs(s). In particular, consider the product X = ZS. S is

assumed tco be non-negative for convenience. The PDF of X conditioned on S is then given by

fxis(xls) = (2 7r)-f 8 N-'exp(--E-) (3.9)

where p' = xTx. From the theorem on total probability, the PDF of X can be written as

fx(x) = (2 7r)- 2° -Nexp(--L-)fs(s)ds. (3.10)

31

'1 ' 1 ' I I ' I =M M "



Comparing eqs (3.10) and (3.2), we can write k = (27r)-f and

hN(p') = 00 S-Nexp(- )fs(s)ds. (3.11)

Thus, it is clear that the PDF of an SSRV is uniquely determined by the specification of a

Gaussian random vector having zero mean and identity covariance matrix and a first order PDF

fs(s) called the characteristic PDF.

The following theorem in [37] states that a SIRV is related to an SSRV by a linear transfor-

mation.

Theorem 2 If X is an SSRV, with characteristic PDF fs(s), then the deterministic linear

transformation

Y=AX+b (3.12)

results in Y being an SIRV having mean vector b, covariance matriz E = AAT and the same

characteristic PDF. It is required that AAT be nonsingular.

Proof: Since X is an SSRV, we can express X as X = ZS, where Z is a Gaussian random vector

having zero mean and identity covariance matrix and S is a non-negative random variable. Hence,

Y = AZS + b. (3.13)

Conditioned on S, the PDF of Y is Gaussian, with mean vector equal to b and covariance matrix

equal to AATs2. The PDF of Y conditioned on S is given by

fyls(yls) = (2ir) 2 [I2I2s exp(-P) (3.14)

where p = (y - b)TE-I(y - b) and IEI denotes the determinant of the covariance matrix E =

AAT. Using the theorem on total probability, the PDF of Y can be written as

fy(y) = (27r)-4rj*I-hN(p) (3.15)

where

hN(p) = js 3-Nexp(- s2)fs(s)ds. (3.16)
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The PDF of Y is of the form of eq (3.1). Therefore, Y is an SIRV. The PDF of an SIRV is uniquely

determined by the specification of a mean vector, a covariance matrix and a first order PDF called

the characteristic PDF. Theorem 1 for SSRVs generalizes for SIRVs in a straightforward manner.

The only difference is that conditioned on the non-negative random variable T, the {fY : (k =

1, 2, ... N)) are no longer statistically independent. Instead, the PDF of Y conditioned on T is

"a multivariate Gaussian PDF. By the same argument used for SSRVs, an SIRV can be written as

"a product of a Gaussian random vector and a non-negative random variable. The only difference

is that the mean of the Gaussian random vector need not be zero and its covariance matrix is not

the identity matrix. As a corollary of Theorem 2 [28], it can be readily shown that every linear

transformation on an SIRV results in another SIRV having the same characteristic PDF. As a

special case, when fs(s) = b(s - 1) where 6(.) is the unit impulse function, hN(p) = exp(-R) and

the corresponding SIRV PDF given by eq (3.15) is the multivariate Gaussian PDF. Therefore,

the multivariate Gaussian PDF is a special case of the SIRV PDF.

The following theorem from [29] provides an interesting property of SSRVs when represented

in generalized spherical co-ordinates R E (0, oo), E E (0, 27r) and OA E (0, ir), (k = 1, .. . N -- 2).

Theorem 3 When the components of the random vector X = [X1 ... XN]T are represented in

the generalized spherical coordinates given by

X, = Rcos(ti)

S= RcosQOk) k-IJ1 sin(Oi) (1 < k < N - 2)i=1 (3.17)

XN-, = Rcos(O)rljN- sin(+,)

XN =" R sin(O)rlN - sin(4)j),

X is an SSRV if and only if R, 0 and %k are mutually and statistically independent random

variables having PDFs of the form

fR(r) = ýy:"7hN (r') u(?)

f,,k(Ok) = 2 sinN-1-k (0k)[u(Ok) - u(pk 7- r)] (3.18)

fe(O) - (2r)-'[u(O) - u(O - 2-r)]
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where r(.) is the Eulero Gamma function and u(.) is the unit step function.

Proof: Since the random vector X is an SSRV, its PDF is of the form of eq (3.2) with hN(p')

being given by eq (3.11). The Jacobian of the transformation given by eq (3.17) is obtained in

[38J as
N-2

J = (RN-1 H sin N-I-k(ok))-l' (3.19)
k=1

Using eq (3.2) and eq (3.19) and noting that R2 = EN I X,2, the joint PDF of R, 9 and ' (k =

1,2,... N - 2) becomes

- : N-1 N-2

AfRAI... ON- 2 (r, O,'k1'... N-2) = r(i_- hN(r 2 ) I airnN-1-k(ok) (3.20)
(-.7r) k=1i

Since the joint PDF in eq (3.20), can be written as a product of the marginal PDFs given

in eq (3.18), the variables R, 9 and 4%k, are mutually and statistically independent with the

prescribed PDFs. In order to prove the sufficient part of the property, we start with the marginal

PDFs of R, E9 and Ok given by eq (3.18) and, under the assumption of statistical independence,

obtain the joint PDF of eq (3.20). Using the inverse Jacobian of that given by eq (3.19), results

in the PDF of X being given by eq (3.2).

3.4 Determining the PDF of an SIRV

In this section we shall present schemes for determining the PDF of an SIRV. We recognize that

the PDF of an SIRV is uniquely determined by the specification of a mean vector, a covariance

matrix and a characteristic first order PDF and that the SIRV PDF has the form of eq (3.15).

Several techniques are available in the literature for specifying hN(p). The simplest technique

is to use eq (3.16). However, this procedure requires the knowledge of the characteristic PDF

fs(s). Therefore, when fs(s) is not known in closed form or it is difficult to evaluate the integral

in eq (3.16), alternate methods for specifying hN(p) must be examined.

To study the behavior of hN(p), it is convenient to replace p, which is a quadratic form

depending on N, by the dummy scalar variable w. We then write

'00

hN(W) = .oS-exp(-ýsj)fs(s)ds. (3.21)
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When both sides of eq (3.21) are differentiated with respect to w, we obtain

dhN(W) 1 00 _N_2=a -- P(- w-s)fs(s)ds. (3.22)
dw 2 fo2s

The right hand side of eq (3.22) is related to hN+2 (w) by the factor of - . Thus, we have an
interesting result pointed out in [32] that

hN+2(w) = (-2) w(w ) (3.23)

Because

fy(y) = (27r)-q•jII-haN+ 2(P) (3.24)

when Y is of dimension N+2, it follows that hN(w) must be a monotonically decreasing function
for all N. Eq (3.23) provides a mechanism for relating higher order PDFs with those of lower
order. More precisely, starting with N = 1 and N = 2, and using eq (3.23) repeatedly, gives the
following pair of recurrence relations.

1h2NV+l(W)=
dwN (3.25)

h2N+ 2 (w) =(-2)

Therefore, starting from h1 (w) and h2(w) all PDFs of odd and even order, respectively, can be
generated by the use of eq (3.25). However, since hN(.) is defined to be a non-negative mono-
tonically decreasing function for all N, h/(.) and h2(.) must belong to a class of functions that
are positive and monotonically decreasing. Consequently, their successive derivatives will alter-
nate between negative and positive functions that are monotonically increasing and decreasing,
respectively. Given hN(w), the N1h order SIRV PDF is given by

fy(y) = (27r)-•1-2hji[ N(p) (3.26)

where hNv(p) is nothing more than hN(w) witll w replaced by p.
Another approach for specifying hN(p) that begins with the univariate characteristic function

has been proposed in (39, 28, 29]. It is required that the univariate characteristic function be a
real even function whose magnitude is integrable. Also, it is assumed that the components of

35



the SIRV are identically distributed. Under these conditions, it has been shown that

hN(p) = (VP)1- 0 J• wfO(w)JVa(wV/r)dW (3.27)

where O(w) is the univariate characteristic function and J0 ('?) is the Bessel function of order a.

Eq (3.27) has an elegant proof by induction which is presented here. From eq (3.15) it follows

that h1 (p) is related to the first order SIRV PDF of the iVh component. More explicitly, we can

write

f =(yi) -- (V2/ir)-'hi(pi) (i = 1, 2, ... N) (3.28)

y,2where pi = ; and oa is the common variance of the random variables Yi (i = 1, 2, ... N). For

convenience, assume that o2 is unity. The univaria&-e characteristic function is then given by

.... - fy,(y,)exp(jwy,)dy,. (3.29)

Using the inverse Fourier transform and noting that y' = Vr•, hi(pi) can be expressed in terms

of the characteristic function as

hi(p,)= 0,(w)exp(-jw,/'p)d&. (3.30)

Since Oj(w) is the same for all i, the subscript i in eq (3.30) can be dropped. In addition, because

OS(w) is an even function, we can rewrite eq (3.30) as

hi(p) = j (w)cos(wýF)dw. (3.31)

Recognizing that cos(x) = V' 1J_(x), and replacing p by the dummy variable w, we have

h1(w) = (v/w)12- w•'j(w)J_.(wv'wt)dw. (3.32)

Since the derivation makes use of eq (3.23) it is necessary to consider odd and even values of N

separately. For odd values of N, eq (3.27) can be written d4

h2Nl(=O (VW-)3-, •0o N-1

h2N. 1(w)= W -•w(w)J2.(wVG'.)dw. (3.33)

Equation (3.33) is now shown to hold for ail N by means of induction. With N = 1, eq (3.33)
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reduces to eq (3.32). It remains to show that eq (3.33) is valid when N is replaced by N + 1.

Differentiating both sides of eq (3.33) with respect to w, we obtain
dh2Nv-I(w) 0d[VWI.N -dw

-dw -- I O(W)w '- (wV w (3.34)

First, focus on the term d[(Vw) J1 1  (wI/w')]. Since this involves the derivative of a product,

we can write

d_ 1 -- N)(v3)N-NJ2ga(a(wV) + (Vrw')-N dw[J W
dwW-(VW)-'21-3(WWý -1 dw J)

(3.35)

Using the identity [40]
dJ77() = Qj()_ J,+ 1(q) (3.36)

we have
d = W 2N - 3 w 27.

Wi•(vW- [L r J1A(wVG) - J .(wx/''). (3.37)

Substituting eq (3.37) in eq (3.35) gives

d I_[ -/•}Ng•.,w/t5] w _aw-'((JW.2._I(wV/'w). (3.38)
dW 2 2 2

Consequently, eq (3.34) reduces to

dw VWJ-- -(W) 1N+ ½o(w)JA(w... 'w)dw" (3.39)

However, from eq (3.23) we know that h2N+1(w) = (- 2 )dh 2 N)IlW) . Hence, we have from eq (3.39)
00 N+1 ½w

h 2N+l(w) = (V/'W) -N10 N w •+(w)ap• (w Vrw)dw. (3.40)

Because eq (3.40) is identical to eq (3.33) with N replaced by N + 1, it has been shown by

induction that eq (3.33) is valid for all N. It follows that eq (3.27)is valid for all odd values of

N.

In a similar manner, starting with h2(p), it can be shown that

h2N+2(P) -- W jc N+I (w)gN(wV)d, (3.41)

for all N. Note that eq (3.41) is identical to eq (3.27) with N replaced by 2N + 2. The proof of
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this result is presented in Chapter 3. Thus, in general, for any N (odd or even), we can write

hN(p) as in eq (3.27).

3.5 Properties of SIRVs

In this section we present certain important properties of SIRVs.
3.5.1 PDF Characterization

The multivariate PDF of an SIRV as given by eqs. (3.15) and (3.16) is uniquely determined

by the specification of a mean vector b, a covariance matrix E and a characteristic first order

PDF fs(.s). The PDF involves a non-negative, real valued monotonically decrcasing function

hN(.) of a non-negative quadratic form. The type of SIRV is determined by the form of hN(.)

or, equivalently, the choice of fs(s). Higher order PDFs can be obtained by the use of eq (3.27)

whereas lower order PDFs c%.tn be obtained in the usual manner by integrating out the unwanted

variables. We discuss this procedure in Appendix A. The PDFs of all orders are of the same

type. The marginal PDFs are used to classify the type of SIRV.

3.5.2 Closure Under Linear Transformation

As shown in Theorem 2 of Section 2.3, every linear transformation of the form of eq (3.12) on

an SIRV results in another SIRV having the same characteristic PDF. This feature is called the

closure property of SIRVs [28, 29].

3.5.3 Minimum Mean Square Error Estimation

In minimum mean square error estimation (MMSE) problems, given a set of data, SIRVs are

fouiud to result in linear estimators [39, 28, 41]. An interesting proof of this property is presented

here. Let Y = [Y 1 r y 2T1 T where Yi = [j1, Y2, . Ym]T and Y 2 = [Ym+i, Ym+ 2 , ... YN]T denote

the partitions of Y. It has been pointed out in [42] that the minimum mean square error estimate

of the random vector Y 2 given the observations from the random vector Y 1 , is given by

Y2 = E[Y 2 1Y1] (3.42)

where E[Y 2 IYj] denotes the conditional mean or the expected value of Y 2 given Y 1 . Assume

that Y is an SIRV of dimension N with characteristic PDF fs(s). Also, for convenience, it is

assumed that the mean of Y is zero. The covariance matrix of Y denoted by E can be partitioned
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as
Cii C 1 2

I (3.43)
li C21 C22

where CuL denotec the covariance matrix of YI, C12 denotes the cross covariance matrix of the

vectors Y1 and Y 2 , C21 is the trtnspose of C12 , and C22 denotes the covariance matrix of the

vector Y 2 . The PDF of Y 2 given Yi is expressed as

fY2 1YI(Y21Y1) = Y) (3.44)
fy 1 (Y.0

Recall from eqs. (3.15) and (3.16) that

fy(y) = (2r)-IJEL-½hN(p) (3.45)

where

hN(p) = j0 s-N exp(- ).fs(s)ds (3.46)

and, assuming b = 0 p - y -1 y. Note that the inverse covariance matrix can be partitioned

as [38]

~~[A B]
E'-1 ._(3.47)

where

A (CI - C1 2 C2-21C 2 1 )-1

B = -AC 12 C2 (3.48)

C = -DC 2 1C• [

D = (C 22 - C 2 1 Cj11 C 12 )-1.

Expanding the quadratic form, we have

P = ylAyl + yTBy2 + y2Cyl + yTDy2. (3.49)
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Adding and subtracting yTCj1'yi to the right hand side of eq (3.49) gives

yT(A- C-')yl + yTCx Iv + yTBy2 + yTCy 1 + yTDy2 . (3.50)

Note that

A - C-' --BC 2 1CG-. (3,51)

Hence,
P . -I yTBCnCIj-Iyj + yTBy2 + YI Cyl + yaDy2 . (3.52)

However, it can be sho-,n that

T~yY2Cy --yTDC21C•IYl

yTBy2  -yITCC1lDy2 (3.53)

-yTBC21C YI =- yIc I1C 12 DC 21 C1iyl

Making these substitutions in the expression for p, it follows that
-1 TD .TnCC-1_ c TC-1 Clyl. (3.54)

P=Yc-1Y+Y TY-2• D21 111y C1 2D2y+Y ClC12DC21C

This can be rewritten as

TC-1

Yl llYl + (Y2 -- C2 1 Cllyl)TD(Y2"' C21Cjlyl) (3.55)

For simplicity, we define

Pl = yTCi11Y1 (3.56)

P2 (Y2 C2 1C-1y1)TD(y2 - C 'y)-.
11 (Y -21C'yl-'

Then

P = P1 + P2. (3.57)
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From eqp (3.57) and (3.44)-(3.46), we have

ky) oo, P+P(3.5)8s()s)ds.
vY2 1Y JIJ; (Yl Yx) = YI 0o - 292)fs

where k = (2r)-f 1•[-. Next, consider

E(Y 2 jY,) k (-jNexP(--2"I) fY2 Y2exP('- j2)dy2fs(s)ds. (3.59)

Noting that

1/y 2 eXp(--'P2 )dy 2 = (21r"ff'3'2'jDj_½ aN-m [C 21C1_ IyY1, (3.60)

gives

.E(Y2 Y1)= fy(y) Jo s-M CXP(- Ps-)fs(s)ds (3.61)

where k, = (27r)-,jEI 21DJ-½[C 21 C1yl]. When a matrix is partitioned as in, eq (3.47), it is

known that [43]

= IC1111C22 - C21C-1'C21. (3.62)

Since

D - (C 2 2 -'C21Cj'zZC1 2 )-1, (3.63)

it follows that

II- IC11ID-11 (3.64)

Thus,

lE]-' = ICuV-'IDI. (3.65)

Hence, k, = (27r)-2 1Cil j-T[C21Cjy Yl]. Finally, since

fy,-(yi) =() fs(s)ds, (3.66)

= E(Y2 1YI) = [C21Cy1Y11. (3.67)

It is seen that the MMSE estimate of Y 2 given the data Y1 is a linear function of Y1.

If the random vectors Y 1 and Y 2 have non-zero means denoted by b1 and b 2 respectively,

41



then eq (3.67) takes the form

E(Y 2 YI) = b2 + C21CI (yi - bl). (3.68)

As a consequence of this property, when the random vectors Y1 and Y2 are uncorrelated so

that C21 = 0, then we have

E[Y2JY1 ] = b2 = E[Y 21. (3.69)

This property is referred to as semi independence in [39, 44, 28]. However, for all SIRVs except

the Gaussian, this result does not imply that

'Y 2 1YIy(21y1) = fY 2 (y2) (3.70)

This emphasizes the property that although uncorrelatedneis guarantees statistical independence

for Gaussian raadom vectors, it is not a general property of SIRVs.
3.5.4 Dih.tribution of Sums of SIRVs

While it is true that the surm of two jointly Gaussian random vectors is also Gaussian, the
same is not true for SIRVs in general. This result holds for twc SIRVs whern they are sta-

tistically independent, have zero mean and when the ccvariance matrix of the first is within

a multiplicative constant of the covariance matrix of the second [28, 29]. Mere precisely, let

Y1 = [Y11, Y12, ... YIN]T and Y2 = [Y21, Y22, ... Y2 N]T denote two independent zero mean SIRVs.

The covariaace matrix and characteristic PDF of Y 1 are denoted by El and fs, (s1). The cor-

responding quantities for Y2 are denoted by :E2 and fs 2 (S2). We are interested in obtaining the

distribution of the sum given by

Y = Y 1 + Y 2 . (3.71)

The characteristic function of Y is given by

E[exp(jwY)] = gi(wT 9w)g2(wT E 2w) (3.72)

where gl(.) and Q2(.) are the charactaristic functions of Y 1 and Y 2 , respectively. If Y is a zero

mean SIRV, then its characteristic function has the form

E[exp(jwY)] = g(wTEw). (3.73)
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In order to write eq (3.72) as a function of a single quadratic form, E2 must be within a multi-

plicative constant of El.
3.5.5 Markov Property for SIRPs

An interesting property of SIRPs is that a zero mean wide sense stationary SIRP is Markov if

and only if its autocorrelation function has the form

R(t1 , t2) = eXp(-aI(t1 - t2J). (3.74)

This result is well known for the special case of a zero mean wide sense stationary Gaussian

random process. To demonstrate the more general result we consider N samples from a zero

mean wide sense stationary SIRP y(t). Let Y = [YI, Y2 ... , YN]T denote the vector of successive

samples obtained from the SIRP.

Given that y(t) is a zero mean wide sense stationary Markov SIRP, we first show that its

autocorrelation function must have the form of eq (3.74).Let Y1, Y2 and Y3 denote the random

variables obtained by sampling y(t) at time instants ti, t2 and t3 such that tj < t 2 < t3. Since

y(t) is a Markov process, the joint PDF of Y1, Y2 and Y3 can be expressed as

fY, , Y,,Y 3 (Y1, Y2, Y3) = fh. (Yl)fY2 Y, (Y2Y1)fY3 jY2 (y3y2). (3.75)

The autocorrelation function R(t 3 , t 1 ) = E[Y3Y] is given by

R(t3 , t,) = r. f yYlfY1 ,Y2,Y3(Y1, Y2, •y)dY 1dY2dy3 . (3.76)

Also,

R(t 2, t2) = E[Y2
2] = ff Y2  (Y2 )dY2. (3.77)

Hence,

R(t3 , il)R(t2 , t2) = L-. f: f f y3y1fY1 ,Y2 ,Y3(Y1,Y2, y3)dyidy2dy3y•fy 2(y2)dy2. (3.78)

Using eq (3.75) we can rewrite the above equation as

R(t3,tl)R(t 2,t2) = j J y3y2 fy3 ,y2 (y3, y2)dy3dy2  j Y2y~fY2,Yl(y2, Y)dY2dYl. (3.79)
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Consequently,

R(t 3, t,)R(t2, t2 ) = R(t 3, t2 )R(t 2, t,). (3.80)

The only non-trivial autocorrelation function satisfying this property is given by eq (3.74).

Since y(t) is a zero mean SIRP, it follows that E[Y] = 0. Letting b = exp(-a), we can write

the covariance matrix of Y as

1 b ... bN-1

b 1 ... bN-2

E= b2  b ... N-3 (3.81)

bN- N-2 ...

We then make use of eq (3.68) to obtain

E[YNIYN-1, YN-2 ... 1,Y1] = [bN-1 bN- 2 . . . ],1Y (3.82)

where Y' =[Y1, Y 2 ,...,YN-]T and

1 b bN-2

b 1 b N-3

EYI = (3.83)
. .. .. . .. .

bN2 bN-3 ...
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Recognizing that

1 -b 0 ... ... 0

-b 1 +b 2  -b 0 ... 0

1 0 -b 1 +b 2 
... ... 0

= 2 (3.84)

o ... ... -b 1+b 2 -b

0 ... ... ... -b 1

Therefore, we can rewrite eq (3.82) as

E[VNIYN-1, YN-2 . . . ,Y 1] - bYN=.1  (3.85)

From eq (3.68), we also obtain

E[YNIYN-1] = bYN-1. (3.86)

Clearly E[YNIYN-,] = E[YNIYN-., YN-2 ... , Y]. Since this must be true for all choices of

Y1 , Y2 t, ... YN-1, it follows that f•'N,--1,yN--2....Yl(YNjYN-1, YN-2 .... YI) = fYVIuVN-,(YNIYN-1).

Hence, y(t) is Markov.
3.5.6 Kalman Filter for SIRPs

It has been shown by Chu in [41] that the Kalman filter for SIRPs is identical to the corre-
sponding filter for a Gaussian random process. The model considered in [41] is given by

Xk+1 FkXk + GkWk (k = 0, 1, ... , N - 1)
(3.87)

Yk Hkxc + Vk (k - 0, 1, ... , N - 1)

where Xk denotes the state vector of the underlying process, Wk is its excitation vector, Yk
denotes the observation vector and Vk is the measurement noise. It is assumed that Xk, Wk and
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Vk are jointly SIRP with a. common characteristic PDF fs(a). Also, let

E[Xk]-- W (k-- 0, 1, ... , N-I1)

E[(xk - X'k)(Xk - Rk-)T] = Mk

E[Wk] = E[Vkj = 0 (3.88)

E[(Xk - Z)WkT] = E[(Xk - Wki)Vk] = E[WkVkT] -

E[w wk] = Qk6l,m

E[vkavkm] = Rk6l,m

where wkj and vkm are the m'h components of Wk and Vk respectively, and 61,m is the Kronecker

delta function. Hence, Xk, Wk and Vk are mutually uncorrelated while Wk and Vk are each white

with zero mean.

The innovations vector is defined as

YkJk-1 = Yk - Hk:xklk-1 (3.89)

where Xkkk-1 is the MMSE estimate of xk given the observation vectors up to k - 1. The

covariance matrix of the innovations can be shown to be

COV(Yklk-1) = Sk~k-1 = (HkMkHT + Rk). (3.90)

It can be readily shown that xk and Yk are jointly SIRP. Therefore, the MMSE estimate of Xk

given the observation vectors up to k - 1 is a linear function of Y. m = 1, 2, ... , k - 1, as

shown by eq (3.68). Hence, the Kalman filter equations for SIRPs are identical to those for the

Gaussian case. The Kalman gain denoted by Kkgk is expressed as

T-1 (.1

Kk~k = MkHk S 1 . (3.91)

The measurement update Xklk is given by

Xklk = Xklk-.1 + Kkik"kkk-1 -- (I - Kklk)kklk_1 + Kk-kYk. (3.92)
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The covariance matrix of the error in the update can be written as

CO = Mk- MkHk(HkMk~iT + Rk)-t HkMk. (3.93)

The prediction is then given by

*k+llk -= Fk:kklk" (3.94)

Finally, the covariance matrix of the prediction is expressed as

Mk+1 = FkCkFkT + GkQkGT. (3.95)

When systems driven by non-Gaustian noise are encountered in practice, under the assumption

of joint SIRPs, these equations provide an efficient computation formula for the Kalman filter.

3.5.7 Statistical Independence

We point out that the only case for which the components of an SSRV are statistically inde-

pendent occurs when the SSRV is Gaussian. This property is proved in Appendix A.
3.5.8 Ergodic.ty of SIRPs

It has been pointed out in [39] that an ergodic SIRP is necessarily Gaussian. The proof of

the non-ergodicity of SIRPs (except Gaussian) can be easily obtained using the representation

theorem [28] for SIRPs which states that an SIRP is a univariate randemization of the Gaussian

random process. More precisely, if y(t) is an SIRP, then it can be expressed as y(t) = Sz(t),

where S is a non-negative random variable and z(t) is a Gaussian random process. Clearly, if

z(t) is stationary, then y(t) will also be stationary. However, different realizations of S result

in different scale factors for the sample functions of y(t). Therefore, time averages will differ

from one sample function to another and, in general, will not equal the corresponding ensemble

average. Consequently, y(t) cannot be ergodic. When S is a non-random constant, y(t) is a

Gaussian random process. Then y(t) will be ergodic provided z(t) is also ergodic. It is concluded

that only Gaussian SIRPs can be ergodic.

3.6 Conclusion

In this chapter, we have presented an overview of the literature on both the modeling of radar

clutter and the theory of SIRPs. It is clear from this chapter that the PDF of an SIRV is uniquely

determined by the specification of a mean vector, a covariance matrix and a characteristic first

order PDF. It is also seen that many interesting properties of Gaussian random processes extend
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readily to SIRPL. A major difference with non-Gaussian SIRPs is their non-ergodic behavior.

Consequently, th.,z- averages do not result in corresponding ensemble averages. However, if

ensemble averages are used instead of time averages, then non-ergodicity is not a serious problem.

In the following chapters, we shall present the application of SIRPs for non-Gaussian radar clutter

modeling, simulation and distribution identification.
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Chapter 4

"Radar Clutter Modeling Using

Spherically Invariant Random

Processes

4.1 Introduction

In this chapter we consider the use of the theory of spherically invariant random processes

(SIRP) for modeling correlated non-Gaussian radar clutter. It has been pointed out in chapter 2

that radar clutter can be non-Gaussian and that radars process N pulses at a time. Furthermore,

the clutter can be highly correlated. Therefore, by clutter modeling we mean the specification

of the joint probability density function (PDF) of the N correlated clutter samples. Since we

are dealing with correlated clutter, the joint PDF cannot be constructed by simply taking the

product of the marginal PDFs. This chapter presents a mathematically elegant and tractable

approach for specifying the joint PDF of N clutter samples. In addition, we discuss the char-

acterization of Gaussian and non-Gaussian correlated random vectors, the need for a library of

multivariate PDFs for modeling correlated non-Gaussian clutter, several techniques for estab-

lishing this library and, finally, a key result for the distribution identification of multivariate

correlated non-Gaussian random vectors.

Specifically, the problem of modeling a eandom vector obtained by sampling a stochastic

process y(t) at N time instants is of interest to us. The stochastic process may be real or

complex. In addition, there is no restriction on the number of samples obtained or the sampling

time instants. In order to completely characterize the random vector we need to specify the joint

probability density function of the N samples (real or complex) or, equivalently, specify the joint
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characteristic function. This problem is very well treated when the underlying stochastic process

is Gaussian. The joint PDF in this case can be written as (2ir)-f ,fIEexp(-f), where p is a

non-negative quadratic form given by p = [y - p]T1-I [y - p]. Here p and E denote the mean

vector and covariance matrix of the Gaussian random vector Y whose components are the N

samples of y(t). However, if y(t) is not a Gaussian random process, there is no unique specification

for the joint PDF of the N samples except when the samples are statistically independent.

When processing real world data, neither the Gaussianity of the underlying stochastic process

nor the statistical independence of the samples is guaranteed. In fact, it is likely that the samples

may be correlated. Hence, we need to obtain multivariate non-Gaussian PDFs which can model

the correlation between samples. In practice, radar clutter can vary from one application to

another. Therefore, we need to have available a library of possible multivariate non-Gaussian

PDFs so that an appropriate PDF can be chosen to approximate the data for each clutter

scenario.

The theory of Spherically Invariant Random Processes (SIRP) provides us with elegant

and mathematically tractable techniques to construct multivariate non-Gaussian PDFs. Spher-

ically invariant random processes are generalizations of the familiar Gaussian random process.

The PDF of every random vector obtained by sampling a SIRP is uniquely determined by the

specification of a mean vector, a covariance matrix and a characteristic first order PDF. In addi-

tion, the PDF of a random vector obtained by sampling a SIRP is a function of a non-negative

quadratic form. However, the PDF does not necessarily involve an exponential dependence on

the quadratic form, as in the Gaussian case. Such a random vector is called a Spherically

Invariant Random Vector (SIRV).

There are two kinds of models for non-Gaussian radar clutter. One is called the endogenous

model, where the desired non-Gaussian process with prescribed envelope PDF and correlation

function is realized by using a zero memory non- linear transformation on a Gaussian process

having a prespecified correlation function. In this approach it is not possible to independently

control the envelope PDF and the correlation properties of the non-Gaussian process. In addition,

not all nonlinearities give rise to a non-negative definite covariance matrix at their outputs. The

second model is called an exogenous product model [26]. In this model, the desired non-Gaussian

clutter is generated by the product of a Gaussian random process and an independent non-

Gaussian process which can be highly correlated. In this scheme, the desired envelope PDF and
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the correlation properties can be controlled independently. The exogenous model can be thought

of as a slowly time variant non-Gaussian process modulating a Gaussian random process. The

SIRP is a special case of the exogenous model, arising when the modulating process does not

change rapidly during the observation interval and can be approximated as a random va.iable.

This is due to the fact that the representation theorem for SIRPs allows us to explicitly write the

non-Gaussian process as a product of a Gaussian process and a non-negative random variable.

By assuming statistical independence between the modulating random variable and the Gaussian

process, it is possible to independently control the non-Gaussian envelope PDF and its correlation

properties. The SIRP is the only known case of the exogenous multiplicative model which allows

the specification of the N"h order PDF.

Section 4.2 outlines the problem of interest. In Section 4.3 we present several techniques to

obtain SIRVs. Examples based on various techniques described in Section 4.3 are used to obtain

a library of SIRV PDFs in Section 4.4. Finally, in Section 4.5, we present a key result which

characterizes SIRVs by using the quadratic form appearing in their PDFs.

4.2 Problem Statement

We assume we are dealing with coherent radar clutter. By coherent radar clutter, we mean

that the clutter is processed in terms of its in phase and out of phase quadrature components.

Pre-detection radar clutter, being a bandpass random process, admits a representation of the

form

y(t) = Re{J9(t)exp(jwot)} (4.1)

where ý(t) = y,(t) + jy,(t) denotes the complex envelope of the clutter process, Wo is a known

carrier frequency, y,(t) and yo(t) denote the in phase and out of phase quadrature comporc.ats

of the complex process ý(t). Equation (4.1) can be rewritten as

y(t) = y,(I)cos(wot) - y.(t)sin(wot). (4.2)

We are interested in specifying the joint PDF of N samples obtained by sampling the process

y(t). Since it is always more convenient to work with the associated low pass process, we consider

the equivalent problem of specifying the PDF of N complex samples obtained from the compI.x

process ý(t). The PDF of a complex random variable is defined to be the joint PDF of its in

phase and out of phase quadrature components. Therefore, it follows that the joint PDF of N
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complex random variables is the joint PDF of the 2N in phase and out of phase quadrature

components. While dealing with complex random variables, it '•; sometimes more convenient to

work with their envelope and phase. The envelope R and phase E of a complex random variable

S= Y6 + jYi are defined by

A = a (4.3)

O, = arctan(-).

We consider the problem of specifying the PDF of a random vector yT = [yT y.TI obtained

by sampling the random process g(t), where Ye = [Yc1, Yc2, ... , YcN1 ]7' and Y1 = [Y.1, Y. 2, • YNVr.

The subscripts c and s denote the in phase arid out of phase quadrature components, respectively.

We assume that the process y(t) is a wide sense stationary random process. The necessary and

sufficient conditions for y(t) to be temporally wide sense stationary [42] are:

(A) The quadrature components have zero mean.

(B) The envelope of the pair wise quadrature components is statis-

tically independent of the phase and the phase is uniformly dis-

tributed over the interval (0,21r). This results in the pair wise

quadrature components being identically distributed and their

joint PDF being circularly symmetric. This also results in the

orthogonality of the pair wise quadrature components at each

sampling instant.

(C) The autocovariance function and crosscovariance function of the

quadrature processes of the complex process 3(t) = y,(t) +

jy,(t) satisfy the conditions given by

K,,(r) = K..(7)
(4.4)

K..(r) = K. (T)
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where

K,,(r) = E{X,(t)X,(t- r)}

Kss(r) = E{X.(t)Xo(t- r)} (4.5)

K,.(T) = E{X.(t)X.(t -T)

K8,(r) = E{X.(t)Xo(t-r)}.

Also, the nonnegative definite property of the covariance matrix

of Y must be satisfied.

(D) Any choice of autocovariance and crosscovariance functions is al-

lowed as long as requirement (C) is satisfied.

Due to requirement (A), it follows that E(Y) = 0. Hence, E(Yc) = E(Ys) = 0. As a

consequence of requirements (B) and (C), the covariance matrix of Y, given by

S= - - (4.6)

must satisfy the conditions:

ECC = ESS
(4.7)

Ecs = - EC

with the elements of the main diagonal of the matrices Ecs and Ec being equal to zero. Note

that Ecc = E{YcYcTI, Ec = E{YcYT}, ESC = E{Y 5YT} and E.. = E{Y8 Y.}. Finally, we

point out, regardless of the value of N, we always have an even order PDF when dealing with

quadrature components. We are now in a position to proceed with the characterization of Y as

an SIRV.

For an SIRV, it is pointed out that the PDF of a given order automatically implies all lower

order PDFs. For example, if N random variables are jointly Gaussian, it is well known that

the ith order PDF, i = 1, 2, ... , N - 1 is multivariate Gaussian. This property of SIRVs is

called internal consistency. The requirements (A)-(D) ari3ing from the wide sense stationarity
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requirements of the process y(t) are called external consistency conditions. Requirements (A)-(D)

are not inherent to the SIRP and do not hold when the SJRP is not wide sense stationary.

4.3 Techniques for Determining the SIRV PDF

In this section, fieveral techniques are presented for obtaining h2N(p). For convenience, tem-

poral wide sense stationarity of the underlying bandpass process is assumed. However, the

functional form of 4 2N(.) is unaffected whether or not the random process is temporally wide

sense stationary. Hence, it is allowable to let p = (y - b)TE-J(y - b) in the final result, where

b is any mean non-zero vector and E is any non-negative definite matrix.

Recall from Chapter 2 that the PDF of an SIRV yT = [y'Tiys] with Y, and Y. defined in

Section 4.2 is given by

fy(y) = (27r)-Nj'I-h2N(p) (4.8)

Assuming temporal wide sense stationarity, p - yTE-1y where E is given by eq (4.6). The

mean vector of Y is zero due to requirement (A) in Section 4.2. The covariance matrix E having

the form of eq (4.6) and satisfying the requirements of eq (4.7) is readily determined when the

autocorrelation function of the process is specified. Given E, several techniques for obtaining

h2N(p) are presented in this section.

The representation theorem for SIRVs allows us to express Y as a product of a Gaussian

random vector Z, having the same dimensions as Y and a non-negative variable S. For the

problem of radar clutter modeling, since it is desirable to control the non-Gaussian nature of Y

and its correlation properties independently, we assume that the random variable S is statistically

independent of Z. In addition, the covariance matrix of the SIRV can be made equal to the

covariance matrix of the Gaussian random vector by requiring E(S 2 ) to be unity. Finally, it is

pointed out that the mean of Z is necessarily zero.

A physical interpretation can be given to Z and S. Consider a surveillance volume subdivided

into contiguous range-Doppler-azimuth cells. Assuming a large enough cell size such that many

scatterers are located in each cell, the N pulse returns from a given cell can be modeled as

the Gaussian vector Z due to the central limit theorem. Also assume that the average clutter

power remains constant over the N pulse returns in a coherent processing interval. However,

the average clutter power is allowed to vary independently from cell to cell since different sets of

scatterers are located in each cell. The variation of the average clutter power from cell to cell is

modeled by the square of the non-negative random variable S.
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4.3.1 SIRV9 with Known Characteristic PDF

We consider specification of the PDF of the SIRV Y when its characteristic PDF is known

in closed form. We have pointed out in the previous section that the mean vector of Y is zero.

Also, we have discussed the specification of the covariance matrix of Y. We now focus on the

specification of h2N(p). As a consequence of the representation theorem, we can write

h2N(p) = j0 s-2N eXPp(-P)f5(s). (4.9)

Equation (4.9) enables us to specify h 2tv(p) when the characteristic PDF fs(,s) iq known in

closed form. However, in some cases, even though an analytical expression is known for the

characteristic PDF, it may be difficult to evaluate the integral in eq (4.9) in closed form. In such

instances, an alternate method for specifying h2N(p) must be examined. The method presented

in the next section is useful for these cases.

4.3.2 SIRVs with Unknown Characteristic PDFs

When the characteristic PDF of the SIRV is unknown or when the integral in eq (4.9) is difficult

to evaluate, we propose an alternate method to obtain h2N(p). Recall that we are dealing with

an even order PDF. Therefore, we can use eq (3.25) starting with h2 (w) to obtain h21 r(w). It is

worthwhile pointing out that h2(.) is related to the first order envelope PDF. From requirement

(B) of Section 3.2, the joint PDF of the ith in phase and out of phase quadrature coniponerots

can be expressed as

fei,,Vo,(Y,,, yei) = (2'r) -o'- 2h2 (p) (i = 1, 2, ... ,N) (4.10)

where p = (Y,2at and a 2 denotes the common variance of the in phase and out of phase

quadratu,-e components. The envelope and phase corresponding to the ith quadrature components

is given by

Ri = Vyý+Y
(4.11)

= arctan --.

Due to the assumption of wide sense stationarity, we can drop the subscript i in eq (4.11). The

Jacobian of the transformation given by eq (4.11) is J = R-', where J dervates the Jacobian.
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Using the Jacobian in eq (4,10) results in the ioint PDF of R and 0 being given by

f..er " 6) " (4.12)

Clearly, the joint PDF in eq (4.12) can be factored as a product of the marginal PDFs of

the random variables R and 0. Consequently, the random variables R and 0 are statistically

independent with PDFs given by

fil(r) = -*h2(") (0 r < oo) (4.13)

fe(o) = (27r)' (0 0 < 2r).

Equation (4.13) relates the envelope PDF to h2 (.). Hence, we can write

r 2 or"2

h2(-) 7"-- fR(r). (4.14)

Thus, eq (4.14) providus a mechanism to obtain h2 (w). Starting from h2(w), we then use eq (3.25)

to obtain h2N(w). Since not all non-Gaussian envelope PDFs are admissible for characterization

as SJRVs, we must check that h2(w) and its derivatives satisfy the monotonicity conditions stated

in Chapter 2. Finally, h2N(p) is obtained by simply replacing w by p = (y - b)Tz-l(y - b) in

h2N(W).

4.3.3 Hankel Transform Approach

In this section we present an approach based on the Hankel transform for specifying h2V(p).

Recall that the joint PDF of the Vth in phase and out of phase quadrature components of Y is

given by eq (4.10). For convenience, it is assumed that 0,2 is unity. Dropping the subscript i

from eq (4.10), the joint characteristic function of Yi and Yi is expressed as

OYb,Y.(WI, L02 ) = (27r 1)- j eXp(jwiy 0 + jwzo2 )h2(y• + y!)dycdys. (4.15)
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Introducing the transformations

R= Nf-2 + Y1

_ = arctan
it (4.16)

= arctan •W€I

we can rewrite eq (4.15) as

qY.,,Y.(W 1, w2) = (27r)-' jjfo 2wexp[ wr{cos(O)cos(a) + oin(O)8in(a))]rh 2(r 2)dr dO. (4.17)

Noting that cos(A - B) - cos(A)cos(B) + sin(A)sin(B), we can rewrite eq (4.17) as

OKY.(WI, W2 ) -=(21r)- foo j expjwrcos(O - a)lrh2(r2 )dr dO. (4.18)

Interchanging the order of integration in eq (4.18), and recognizing that [45]

JO 2 = I j2 expjxcos(/3 - y)]di3, (4.19)

where Jo(x) is the Bessel function of order zero, we have

Oy,,y,(wi, W2) = ,rh2 (r,2)Jo(wr)dr. (4.20)

From eq (4.20), it is clear that the joint characteristic function of Y, and Y, is a function of
S= •w•+ w2. Hence, it is a circularly symmetric characteristic function. Denoting this function

by %F(w), we can write

IF (W) = j rh2(r2 )Jo(wr)dr. (4.21)

Equation (4.21) is recognized as the Hankel transform of order zero of h2(r 2). Using the inverse

Hankel transform, we obtain

h2(r 2 ) = j •wl ((w)Jo(wr)dw. (4.22)
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Introducing the dummy variable w, we can write

p
h2 (w) =0 w T'(w)Jo(w vI) dw. (4.23)

We then use eq (3.25) to obtain h2,N(w). More explicitly, we can write

h2 N(W)=(--2)N-i PfowP° dN-.(.24

= dwwN1 [Jo(w./ivJ)]dw. (4.24)

Using the identity [45]

d•= -J1 (•) (4.25)

we have
d Jo (w ,/u7) - w- J1 •) (4.26)

dw 2
Use of the recurrence relation [45]

d= -Or-g+,(r) (4.27)

results in
d [g0(wv')] = 2(j)2J(WCV/W). (4.28)

Repeated use of eq (4.27) gives
d N-1N-

_ 2N- (V=W()-N+,JN-I(WI). (4.29)

Substituting eq (4.29) in eq (4.24) gives

h2N(W) = (VW)I-N 0WNpI(W)jNl_(WýIW)dW. (4.30)

Finally, h2N(p) is obtained from eq (4.30) by replacing w by p = (y - b)TJl-(y - b). This

completes the proof of eq (3.27) for even values of N which had been previously deferred. The

integral in eq (4.30) is recognized as the Hankel transform of order N - 1 of T(w). A number

of Hankel transforms have been provided in [46] and these will be made use of in the examples

presented in Section 3.4.

58



4.4 Examples of complex SIRVs

This section presents examples based on the approaches discussed in Section 4.3 and is divided

into three parts. In section 4.4.1, we present examples that assumes the knowledge of the

characteristic PDF. In Section 4.4.2, the marginal envelope PDF is assumed to be known whereas

in Section 4.4.3, knowledge of the marginal characteristic function is assumed. Finally, in 4.4.4

we point out some univariate PDFs that cannot be generalized to SIRV characterization. We

consider the problem of determining the PDF of the random vector y' = [yCT:y.] specified in

Section 4.2. It is assumed that the mean vector of Y and its covariance matrix E are known.

Consequently, specification of the PDF of Y of the form of eq (4.8) reduces to determination of

h2N(P).

4.4.1 Examples Based on the Characteristic PDF
4.4.1.1 Gaussian Distribution

The Gaussian marginal PDF for the quadrature components having mean 6 k and variance Ork

is

rY (YA) - (•f- b 2 ) (-oo < Yk <_ oo). (4.31)

The characteristic PDF for this example is given by

fs(s) = 6(s - 1) (4.32)

where b(.) is the unit impulse function. Using eq (3.16), it is seen that the resulting hN(p) is

given by
hN(p) =- eXP(-ý-2) (4.33)

where p = (y - b)TE-l(y - bW. The corresponding PDF for any N is given by eq (3.15). For

N = 1, this result reduces to eq (4.31). While dealing with quadrature components, we obtain the

the corresponding h2N(p) by simply replacing N by 2N in eq (4.33). Whenever a characteristic

PDF can be made to approach a unit impulse function displaced to the right of the origin by

appropriate choice of its parameters, it follows that the corresponding SIRV PDF will approach

the Gaussian PDF.
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4.4.1.2 K-Diutribution

The K-distributed envelope PDF, by definition, is given by

2b br
fR(r) = b(r)(-)*g._j(br)u(r) (4.34)

where a is the shape parameter of the distribution, b denotes the scale parameter of the distribu-

tion, KN(t) is the NMh order modified Bessel function of the second kind and u(r) is the unit step

function. The K-distributed envelope PDF is commonly used for modeling radar clutter PDFs

that have extended tails [32]- [33] and [15]-[22]. In particular, the PDF becomes heavy tailed as

c approaches zero. Plots of eq (4.34) for several values of 0i are shown in Figures 4.1-4.4.

"The K-distributed envelope PDF arises when we consider the product of a Rayleigh distributed

random variable R' and an independent random variable V having the generalized-Chi distri-

bution. More precisely, we consider the product R = R'V, with R' and V being statistically

independent. Their PDFs are given by

fR,(r') = r'exp(--Li-) 0 < < oo (4.35)
2

and 2b _ b2v2

fv(v) - (bV) 2 r 1 exp(- )U(V)' (4.36)

respectively. Consequently, the PDF of R is given by

fR(r) = f•o JRV(rlv)fv(v)dv (4.37)
=fl e -r2 F 21b bV 2 -exp(-bv)f0 VT _Xp(_27) r(..T2 ~b) 'O -- i

From [45], we have

L' 0 0  X(+ 2)j~-
K-,(xz) =- T J0 exp[ 7 dt [largzl < 4 z > 0. (4.38)

Letting v2 = t in eq (4.37) and using the result of eq (4.38), the PDF of eq (4.34) follows.

As a matter of interest, we demonstrate the derivation of the PDF for the quadrature compo-

nents arising from the K-distributed envelope PDF. The quadrature components corresponding to

the Rayleigh envelope PDF fR,(r'), are independent identically distributed zero mean Gaussian
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Figure 4.1: K-distribution, 6 = 0.31, a = 0.05
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Figure 4.2: K-distribution, b = 0.77, a = 0.3
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random variables having unit variance. The PDF of the quadrature components corresponding

to RB is expressed as

fz&(z) = fz,(z) = (27r)-2exp(--) (4.39)

where Z, and Z. denote the in phase and out of phase quadrature components. The quadrature

components arising from the K-distributed envelope PDF, denoted by Y, and Y,, respectively,

can be expressed as

y= z'v
(4.40)

Y.= Z.V.

Note that Jkl = 1Z2 and Ok = E0. Consequently, the PDF of Y, is given by

b 2 acr 2or-2 1 2 V2
fy o(YO) = a22" v exp[--(y-+ b2v2)]dv. (4.41)

Making the change of variables t = b2v2 and z2 = b2y2, and using the result of eq (4.38), the

PDF of Y, is expressed as

A---Y 2b 1by _"Ki

-oy=(a)2 7r2y- 2 2K½_c(bly,0) -0oo < y, < o (4.42)

where the absolute value denoted by 1.1 is used on account of the requirement that z > 0. In a

similar manner, it can be shown that the PDF of Y, has the same functional form as eq (4.42).

The PDF of eq (4.42) is called the Generalized Laplace PDF [29].

The characteristic PDF for the K-distributed SIRV is

fs(S) = F(as)2a,(bs)p"-be2p(- )u(S). (4.43)

Using eqs (3.16) and (4.38),

hN(p) = 0S-N exp(-- 2 (bs)2-'exp(- b2 S2 )ds. (4.44)

N 10 '2s 2' r(a)201 2

Making the change of variables t = b23s2 ind z2 = b2p, the resulting hN(p) is given by

hN(p) = -(b) 2°- T . (4.45)
17(a) 2a-1
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The corresponding SIRV PDF for any N is given by using eq (3.15). For the case when N = 1,

this reduces to eq (4.42). When dealing with quadrature components, we use eq (4.45) with N

replaced by 2N
4.4.1.3 Student-t Distribution

The Student-t distribution for the quadrature components is given by

, (yk) + )( + bYk), (-oo < xk <oo),> 0 (4.46)

fY~ vk = bVI7-r '(i) b

where b is the scale parameter, v is the shape parameter r(m) is the Eulero-Gamma function and

k = c, s. Plots of the Student-t distribution are shown for several values of V in Figures 4.5-4.7.

The characteristic PDF for this example is

fS(s) = 2-,(•)vb2 (sl) 2 +i exp(- )U(s). (4.47)
1'(v)22s

Use of eq (3.16) results in hN(p) being given by

hN(P) 2b2(v + ) (4.48)hp)=r(v)(b2 + )-L

The corresponding SIRV PDF for any N is given by eq (3.15). For N = 1, this result reduces to

eq (4.46). When dealing with quadrature components, we make use of eq (4.48) with N replaced

by 2N.
4.4.1.4 Mixture of Gaussian PDFs

An interesting non-Gaussian marginal PDF that is admissible as an SIRV is the mixture of

Gaussian PDFs. We consider the PDF given by

fai(1(k)kep( = k- bk)2)
fYh(Yk) 2k? (4.49)

for the quadrature components of Y. The characteristic PDF for this example is given by

fs(s) = E ab(s - k,). (4.50)
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Figure 4.5: Student-t distribution, b = 0.14, / = 0.01
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Note that S is a discrete random variable, with a, denoting the probability P(S = k,). Also, it

is required that

a, _> 0 i=1,2,...

-i - 1 .

Using eq (3.16), it is seen that

hN(P) = k CN aexp(- ) (4.52)

i •i

The corresponding SIRV PDF for any N is given by eq (3.15). For N = 1, this result reduces

to eq (4.49). When dealing with quadrature components, we make use of the result of eq (4.52)

with N replaced by 2N. Note that the ai's can be assigned any convenient discrete distribution.

4.4.2 Examples Based on Marginal Envelope PDF

We shall report here on some new SIRV PDFs obtained starting from the marginal envelope

PDF. In general, note that the characteristic PDF for all the examples considered here are not

available in closed form. Since a 2 is the common variance of the in phase and out of phase

quadrature components, a 2 is equal to !E(R 2 ). In addition, recall that the binomial coefficient

is defined by

i) iy!(l- i)(3

In all the examples in this section, we start with h2 (w) and obtain h 2N(w) by the process of

successive differentiation. The corresponding h2N(p) for each example is obtained by replacing

w by p in h 2N(W). In all the examples presented in this section, note that the envelope PDFs

reduce to the Rayleigh envelope PDF for appropriately chosen parameters.
4.4.2.1 Chi Envelope PDF

We consider the Chi distributed envelope PDF given by
2b ,

fR(r) = 2b (br) -leXp(-b2r2) (0 <_ r < oo) (4.54)

where b denotes the scale parameter and v denotes the shape parameter. Plots of the Chi

envelope PDF are shown in Figures 4.8-4.10 for several values of v. Using eq(4.14), we can
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Figure 4.9: Chi Envelope PDF, b =- 0.22, v' 0.1
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write 2

h 2(w) = j(-j(bca)2̀w'- exp(-b 2a 2w). (4.55)

Using eq(3.25), we have

h2N(W)= (- 2 )N-,dN_-Lh2(W)

--2)N-1 2u dN-1 20,-)]
-L l2(ba) jdw-Tl [w exp(-b o"w)].

Recall Leibnitz's theorem for the nIh derivative of a product [45], which states that

dn(uv)-=n' n ( du d--v (4.571
dXn E )dXk dx n-Ak=o

where u and v are functions of x. Noting that

dwk = (v - k)(4.58)

it follows that
N

h2N(W) (- 2 )Nl-A Gkw,-kexp(-Bw) (4.59)

where

G N )( 1)N-kB N-k r(v) (4.60)
k-i ) r(v - k+i) (.0

A = 2 ( b)2Li
r(v)

B = b-,l2 .

An important condition that must be pointed out is that the SIRV PDF is valid only for i < 1.

This is due to the fact that h2(p) and its derivatives are monotonically decreasing functions only

in the range of values of v mentioned above. Finally, for v = 1, note that the Chi envelope PDF

reduces to the Rayleigh envelope PDF. The corresponding SIRV PDF then becomes Gaussian.
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4.4.2.2 Weibull Envelope PDF

The Weibull distributed envelope PDF is given by

fR(r) = abrb-'exp(-arb) (0 < r < oo). (4.61)

where a is the scale parameter and b is the shape parameter. Plots of the Weibull distribution

for several values of b are shown in Figures 4.12-4.14. Using eq (4.14), we have
6 b1bb d Wb]

h2 (w) = ababw1 exp(--aobwy) = (-2)±[exp(-Aw )] (4.62)
dw

where A = aob. From eq (3.25), we have

h2N(W) = (--2)N dwN exp(-Awl)]. (4.63)

The rule for obtaining the Nth derivative of a composite function is [45]: If f(x) = F(y) and

y = V(x), then
dN N Ukdk

=f E T! ýY-k F(y)] (4.64)

where

Uk= Z(-1)k-m yk-,n (4.65)M=1dxN•m=1 m)

Making the association x = w and y = -Aw], we have

N

h2N(W) = Z Ckw-N exp(-Awb) (4.66)
k=1

where

[(1 (--1±m+N 2N 2 . (4.67)

=1 r(I + -N)'

The Weibull envelope PDF is admissible for characterization as an SIRV for values of b less than

or equal to 2. This is due to the fact that h 2(w) and its derivatives fail to satisfy the monotonicity

condition for other values of b. However, this is not a serious restriction from the point of view of

radar clutter modeling because the Weibull envelope PDF is of interest in modeling large tailed
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Figure 4.12: Weibull distributed Envelope PDF, b = 0.5, a = 1.86
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Figure 4.14: Weibuli distribited, b = 2, a = 0.5
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clutter. Such a situation arises only when 0 < b < 2. The Weibull envelope PDF reduces to

the Rayleigh envelope PDF when b = 2. The corresponding SIRV PDF then becomes Gaussian.

Another case of interest arises when b = 1. In this case the Weibull envelope PDF corresponds

to the Exponential envelope PDF.
4.4.2.3 Generalized Rayleigh Envelope PDF

The next PDF considered is for the Generalized Rayleigh envelope which is given by

fR(r) ar exp[-(r)-] (0 5 r < oo) (4.68)

where a is the shape parameter and # is the scale parameter. Plots of the Generalized Rayleigh

distribution are shown for several values of a in Figures 4.15-4.18.

Pruceeding as in the previous example, we find that

h2 (w) = Aexp(-Bwf) (4.69)

where

A = 2 tt~ot(4.7O)

B =

Using eqs (3.25), (3.63) and (3.64), we have

N-i
h2N(W) = E Dkw 2 -+exp(-Bw ) (4.71)

k=1

where

k 1Bk k, ~
Dk = L-(-)+ '2N ( 1 + 2' (4.72)M=1 k! T(2 + MS - N)

Note that the SIRV PDF is valid only in the range (0 _< a < 2). This is because of the fact

that the monotonicity conditions for the derivatives of h2(p) are satisfied only for the specified

range of a. The Generalized Rayleigh envelope PDF reduces to the Rayleigh envelope PDF when

a=2.
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4.4.2.4 Rician Envelope PDF Arising from a seromean complex Gaussian Process with

correlated quadrature components

There are two possible ways in which the Rician envelope PDF occurs. One possibility arises

through a complex zero mean random process with correlated quadrature components that are

Gaussian. The other is through a non-zero mean complex Gaussian process. The former case is

considered here, since the SIRV PDF can be obtained by differentiation of h2(w). For this case,

the envelope PDF is given by

Sr )JO or2

__ fitA(r) = .eXP[-21 p __112L-N (4.73)

(0_<r <oo)

(O<p5 1)

where Io(x) is the modified Bessel's function of the first kind of order zero. Plots of the Rician

envelope PDF for several values of p are shown in Figures 4.19-4.21. Let

12

A Cr 2(4.74)
2(1 - p2)

Using eq (4.14) we have
Vy2

h 2(w)- a. erp(-Aw)Io(pAw). (4.75)

From eq (3.25)
h 2 N(W) = (-2)N-i 

dN-lh
2 (w)

dwNi (4.76)

We then use eq (4.57) and the identities [45]

I,,(x) = f02, cos(na)exp[xcos(a)]da
os() ( k') (4.77)

COSk(O) -2'r ZMr=o k cos[(k - 27n)O]

to obtain

h2N(W) = 1 ((_)k(p)kkeXP(-Aw) (4.78)
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Figure 4.19: Rician Envelope PDF, p = 0.25

86



0.7.

0.6F

0.5

0.4

0.30.

0.2-

0.1

0,
0 1 2 3 4 5 6 7 8 9

Figure 4.20: Riciain EnziveIopc PDF, p = 0.5

87



0 .6 1 -- -- "r --------- , .... -- - - - - - - -

0.5

0,4

0.3 3

0.2

0 . 1. . ... . . , . . .

0 2 3 4 5 6 7 8 9

Figure 4.21: Iticiaii Envelope PDF, p =0.9

l ss



where

= Ik 2 (pAw). (4.79)

For p = 0, note that the Rician envelope PDF corresponds to the Rayleigh envelope PDF.
4.4.3 Examples Using the Marginal Characteristic Function

Successful use of the marginal characteristic function approach requires the knowledge of vari-

ous Hankel transforms. For each example, the oarticular transform used is cited by equation and

page number as it appears in [46]. To illustrate the procedure followed, a detailed derivation is

presented in the first example. However, in the remaining examples, we simply list the univariate

characteristic function of the quadrature components, the corresponding marginal PDF and the

resulting h2N(w). Finally, h2N(p) is obtained by replacing w with p in the expressions for h2 N(W).

4.4.3.1 Gaussian Distribution

First, we consider the characteristic function given by
Wd2

p) =). (4.80)

The corresponding marginal PDF of the quadrature components is

12
fY,(Yk) = - exp(- 0(-o 5 Yk < oo). (4.81)V 2 2"r ) 2

Equation (4.81) is the PDF of a zero mean unit variance Gaussian random variable. Substitution

of eq (4.80) in eq (4.30) yields
h2 N(WO) -" (V'W)i-N f0  2 (.2

h2](W _-I-N 0W N exp(- -•)JNv-, ( wv)dw. (4.82)

From [46], eq (10), p29, we have the Hankel transform

X+exp(,aX2)j(Xy) dX =( 2 )v+i exp(--a). (4.83)

By making the association that a = 0.5, v = N- 1, x = w and y = V/GZ, the above result becomes

o w2 _N-I+= (4.84)
89exp(--).
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It follows that

h2N(W) = exp(--2). (4.85)

From eq (4.1), it is seen that the resulting SIRV PDF is the familiar multivariate Gaussian PDF,

given by

fy(y) = (27r)-Nj•E-exp(-2). (4.86)
2

4.4.3.2 K-Distribution

The marginal characteristic function given by

62 S~ (4.87)

corresponds to the K-distributed envelope whose PDF is

2b br
fR(r) = --(-r(-)*K,_,(br)u(r) (4.88)

where a is the shape parameter of the distribution, b denotes its scale parameter, KN(t) is the

N" order modified Bessel function of the second kind and u(r) is the unit step function. The

pertinent Hankel transform for this example is found as [46] eq (20), p24:

f+ a2)-ul j.(Xy)v-dx = a -uyu+½Kv,. (ay)
0 X 2 +a 2ur(u + 1) (4.89)

The resulting h2N(W) is

h2N(W) b (b )-N KN ,( bVW). (4.90)
r (a ) 2-a-1

As a special case, when a is equal to unity, eq (4.87) is the characteristic function of the

Laplace distribution for the quadrature components whose PDF is eiven by

fY,((Yk) = bezp(-bjYkI) (-oo < Yk <_ o0) (4.91)

where lYki denotes the absolute value of yk and b denotes the scale parameter. The corresponding

h2N(W) is given by

h2N(W) = b2N(&bVfw )l-NKN_ l (bvrww). (4.92)

Another interesting case of the K-distribution arises when a = 0.5. Since KI(t) =

this corresponds to the exponential distribution for the marginal envelope PDF. Therefore, the K-
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distributed envelope PDF with a = 0.5 is identical to the Weibull distributed envelope with b = 1.

Although the characteristic PDF of the Weibull SIRV is unknown in general, the characteristic

PDF of the Weibull SIRV for b = 1 is obtained when a = 0.5 in eq (4.43). Finally, we point out

that the K-distributed envelope reduces to the Rayleigh envelope PDF when a tends to 00.

4.4.3.3 Student-t Distribution

The characteristic function for the Student-t distribution with scale parameter b and shape

parainde1r v is given by

(w) = 2y-,r(v) (

Note the functional similarity with the envelope PDF given by eq (4.88). The Student-t distri-

bution is referred to as the generalized Cauchy distribution in [47] because the marginal PDF of

the quadrature components is given by

(I ( ½w(i Y•--(-0) <5 ...I > 0 (4.94)

fyJ(Yk) - bV7.rr(v) + V2  ( xk _ oo, >

where iP(v) is the Eulero-Gamma function. The relevant Hankel transform, [46] eq (3), p6 3 is

iXu t 2Ku(ax)J.(xy)V,1x~dx = -~ u~ +v+1y+ (4.95)
(y2 + a2)u+v+1

Using eq (4.30), h2N(w) is expressed as

h2 N(W) = 2rNb 2 j( + N) (4.96)

The Cauchy PDF for the quadrature components arises when v is set equal to 1 in eq (4.94)

and is given by
b

fn (Yk) - 7r(b 2 + y•) (-00 < Xk _ oo) (4.97)

where b is the scale parameter. The corresponding h2,N(W) is

2Nbr(I + N)
h2N(W) = 2(4.98)

,-(b 2 + w)N+..

Note that the Cauchy PDF does not have finite variance. However, this PDF is useful in modeling

impulsive noise [48]. Finally, we point out that when b = V2 and v tends to oo in eq (4.94),

the Student-t distribution reduces to the Gaussian distribution.
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4.4.3.4 Rician Envelope PDF arising from a non-zero mean complex Gaussian Process

We consider the Rician envelope PDF, arising from a von-zero mean complex Gaussian process,

given by ezp[ (r2 + a2  (ar)

r')= (r2 + a 2l a (4.99)

Plots of the Rician envelope PDF are shown in Figures 4.20-4.22 for a = 1 and several values of

a. Note that this PDF approaches the Rayleigh PDF as a tends to zero. For convenience, we

assume that a 2 = !E(R 2 ) = 1. Using eq (4.14), we have

h2(r 2) = Aexp(- 2 () (4.100)

where A = xp(--), Noting that [45]

fo xexp(-ax 2)L,(fX)J,(Qx)dX= = (4.101)
2 of a l a(4 .10 1 )

Reja) •> 0, Rejvj > -1,

eq (4.21) results in the characteristic function

22 aiw)= exp(--~•2-)Jo(•-.). a. (4.102)

Recognizing that [45]

foo A-_1 pa2)ji,(#X)j,(7X)dX
f07 X exp(-ax)J(xJ,(xd=

____-___ r(v+n+f +-)t P-mp(F.m 2) D* y + 1; (4.103)2,•+r~~l M•O mrm•+)•4J x-, -p - m; v + 2)

Re{}a > 0, Re{p + v + A} > -2, 3 > 0, y > 0

where F(., .; .; .) is the four parameter hypergeometric function, it follows from eq (4.30) that

____a2N_2 r(rn +- N + 1) -a 2  Wa 4 (
h2 N(W) = 22N+1r(N) m=O m!r(m + 1) (a2'-) m F(-r, -in; N; --- ) (4.104)

Since h2N(W) for this example involves an infinite series of hypergeometric functions, form is

mathematically intractable. Therefore, the corresponding multivariate SIRV PDF does not lend
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Table 4.1: Marginal PDF

Chi VC_ _ex- )
Weibull ab

Rtician 7 jmexp[- 10I~uf~

Gaussian -wIe"p(, )
Laplace jec -bj'j

Cauchy aR
K-distribution r .L(k)aKal(bX)U(z)
Student-t ami(I + ) ''

itself for use in practical applications.

4.4.3.5 Summary

The results derived in this section are summarized here. As a point of interest, it is mentioned

that the log-normal envelope PDF given by

fR(r) = exp[ log(r) (4.105)
S(2zry exp- 2

and the Johnson (unbounded) distribution whose PDF is given by

fi(Y) = I [ inh-(y)26 _)2] (4.106)

cannot be extended to SIRVs because h2 (w) for each of these distributions fails to satisfy the

monotonicity conditions stated in section 4.3.

Table 4.1, presents a list of marginal PDFs suitable for extension to SIRVs. Table 4.2 tabulates

hIN(p) for those marginal PDFs treated as envelope PDFs while Table 4.3 gives those h2N(p)

obtained from the associated marginal characteristic function.

Plots of eq (4.8) with N = 1 for the various SIRV PDFs are shown in Figures 4.25-4.33. In all

the plots, the covariance matrix used is given by

1 0.5]

E = (4.107)
S~0.5 1

Observe that each PDF is unimodal. However, the width and height of the peak along with the
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Table 4.2: SIRVe obtained from the marginal envelope PDF
Marginal PDF h2NPL(____________
Chi (-)YIE' h&-

A- I

Weibull ~ = Ckp~j#Nez(A
A = aao

C,, El Z 1  I)-+N 2N1t; k) ro+

Gen. Ra~yleigh DkP D.? lexp(-Bpt)

Rician ~ 2Nv -1( N- 1) -)()4z(A

Z = =O k Itg- 2m(pA), A

Table 4.3: SIRV9 obtained from the marginal characteristic function
Marginal PDF h2N P
Gaussian expý(-)
Laplace 6 ~b p -NKN...b

Cauchy 2b(+

K-distribution 2N(
1'(,) f_'rFu+N -(ýn

Student-t 2b
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behavior of the extreme values (i.e. the tails) differ significantly.

4.5 Significance of the Quadratic form of the SIRV PDF

Thus far, our discussion has focused on techniques that can be used to obtain the PDF of an

SIRV starting from either the first order PDF or the first order characteristic function. Given

random data, we are also interested in the problem of approximating the distribution of the

underlying data. The problem of multivariate distribution identification is of interest in radar

signal detection. Since the background clutter is not known a priori, there is a need to identify the

underlying clutter PDF based on measurements obtained from a given environment. Since the

radar processes N pulses at a time, knowledge of the joint PDF of the N samples is necessary in

oreer to obtain the optimal radar signal processor for the given clutter background. We present

an important theorem here which enables us to address the distribution approximation of an

SIRV.

Theorem 4 The PDF of the quadratic form appearing in eq (3.15) is given by

1 N
fp(p) = •'.p1'hN(p) (O<p<_oo). (4.108)

Proof: First, we consider a spherically symmetric random vector (SSRV) X = [XI, X 2, ... , XNr]T.

Because an SSRV is a special case of the SIRV, the representation theorem can be used to express

Xas

X=ZS (4.109)

where Z is a Gaussian random vector having zero mean and identity covariance matrix and S is

a non-negative random variable with PDF fs(s). Consider the random variable

P' = XTX. (4.110)

Using eq (4.109) in eq (4.110) gives

P' = ZTZS 2 . (4.111)

Since ZTZ = -ý 1 Zi is the sum of the squares of independent identically distributed Gaussian

random variables having zero mean and unit variance, the PDF of V = ZTZ is a Chi square
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Figure 4,28: K-distribution, b 1, a 0.5
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distribution with N degrees of freedom. Consequently,

v*-1 /t

fv() = 2f (N)exP(--) ; v _ 0. (4.112)

Noting that P' = VS-, it follows that

fp'IS(p'Is) = S-N ep(--P)" (4.113)
2fr(* 2

From the theorem of total probability, we bave

f'(')=f (PI)f -1 N"-Nezp(-- P? )f$(S)dS' 414

= () (4.114)

Recall from Theorem 2 that

hN(p') a 8 -N exp(--L_. )fs(s)ds. (4.115)

Consequently, the PDF of P' is expressed as

(P ) . .hN* " (4.116)

Recall that an SIRV Y = [Y1, Y2, ... , YN]T having a mean vector b and covariance matrix E is

related to the SSRV X by the linear transformation

Y = AX+b (4.117)

where E = AAT. Observe that

P = (Y - b)TE-I(Y -- b)

= (AX)(AAT)-IAX (4.118)

= XTX.
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Since P = P'l the PDF of the quadratic form P which is associated with Y is

S=(P)- hN(P)- (4.119):,)-2f r(N-), p

This establishes the i'ievrem. Thus, an SIRV is uniquely characterized by the quadratic form ap-

pearing in its PDF. Knowledge of the quadratic form PDF is sufficient to identify the SIRV PDF.

This is an important result since it allows us to reduce the multivariate distribution identifica-

tion problem to the equivalent problem of univariate distribution identification of the quadratic

form. We point out that the invariance of the distribution of the quadratic form, regardless of

whether we are dealing with an SIRV or an SSRV, arises from the fact that the random vector

is distributed over an N dimensional hypersphere of radius R. The radius of the hypersphere

remains unchanged regardless of whether we consider an SIRV or an SSRV. Only the azimuthal

angles and radial angle change depending on whether the random vector is a SSRV or an SIRV.

In context of the radar problem, we are dealing with N complex samples or 2N quadrature

components. The results presented in this section are applicable when N is replaced by 2N.

4.6 Conclusion

In this chapter we have pointed out a method to obtain the PDF of correlated non-Gaussian

random -vectors arising in the problem of radar clutter modeling. The theory of SIRPs has been

used to develop the multivariate PDFs. Various techniques have been presented to obtain SIRV

PDFs. Several examples are provided to illustrate these techniques. Finally, we have obtained

the PDF of the quadratic form of a SIRV and we have shown that this PDF remains unchanged

regardless of whether we are dealing with an SSRV or an SIRV. We have also established that the

quadratic form contains all the information that is required in order to identify the SIRV PDF. As

a consequence of this result, the problem of an SIRV (multivariate) distribution identification has

been reduced to the equivalent identification of the univariate distribution of the non-negative

quadratic form.
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Chapter 5

Computer Generation of Simulated

Radar Clutter Characterized as SIRPs

5.1 Introduction

This investigation is motivated by a desire to simulate correlated non-Gaussian radar clutter.

Various investigators have reported experimental results where non-Gaussian marginal proba-

bility density functions (PDF) have been used to model the clutter. Usually, radars process N

samples at a time. Statistical characterization of the clutter requires the specification of the

joint PDF of the N samples. In addition, the clutter may be highly correlated. Hence, the joint

PDF must take into account the correlation between samples. Statistical characterization of the

clutter is necessary if an optimal radar signal processor is to be obtained. For use of the well

known likelihood ratio test, it is necessary to have closed form expressions for the joint PDF of

the N clutter samples in order to obtain the optimal radar 'signal processor. In most cases, it is

difficult to evaluate the performance of the optimal radar signal processor analytically when the

clutter samples are correlated and non-Gaussian. Then computer simulation may be necessary.

Therefore, there is a need to develop efficient procedures that facilitate computer simulation

of the clutter. A library of multivariate non-Gaussian PDFs has been developed in Chapter

4, using the theory of Spherically Invariant Random Processes (SIRP) and Spherically

Invariant Random Vectors (SIRV). In view of the large number of parameters that are free

to be specified, the library of multivariate non-Gaussian PDFs can be used to approximate many

different radar clutter scenarios. In this chapter we concern ourselves with the development of

computer simulation procedures for the library of non-Gaussian PDFs obtained in Chapter 4
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so that the performance of any radar signal processor can be evaluated for a variety of differ-

ent clutter scenarios. Another issue addressed in this chapter is performance assessment of the

simulation procedures. It has been pointed out in Chapter 4 that the quadratic form appearing

in the PDF of the SIRV contains all the information necessary to identify the PDF of the un-

derlying SIRV. We make use of this result in order to assess the performance of the simulation

procedures. Some interesting simulation techniques have been proposed for SIRVs in [31] and

[33]. The technique suggested in [31] makes use of Meijer's-G functions. These functions are

generalizations of Hypergeometric functions which do not lend themselves to the development of

simple and elegant simulation procedures. The technique suggested in [33] requires transforma-

tions from rectangular to spherical co-ordinates and then back again. Secondly, this simulation

procedure involves the use of the inverse distribution function approach for a rather complicated

distribution function. The approach developed in this chapter is simpler to implement than those

proposed in [31] and [33]. In addition, a new approach is proposed for assessing the effectiveness

of the simulation procedure.

In Section 5.2, we review some definitions and background information pertaining to the theory

of spherically invariant random processes. Section 5.3 presents two canonical simulation proce-

dures for generating SIRVs. Performance assessment of the simulation procedures is discussed

it, Section 5.4. Finally, conclusions are presented in Section 5.5.

5.2 Preliminaries

We begin by restating the definitions for spherically invariant random vector and spherically

invariant random processes. A spherically invariant random vector (SIRV) is a random vector

(real or complex) whose PDF is uniquely determined by the specification of a mean vector, a

covariance matrix and a characteristic first order PDF. Equivalently, the PDF of an SIRV can

also be referred to as an elliptically contoured distribution. A spherically invariant random

process (SIRP) is a random process (real or complex) such that every random vector obtained

by sampling this process is an SIRV. The work of Yao [28] gave rise to a representation theorem

which ran be stated as follows (see Theorem 1):

If a random vector is a SIRV, then there exists a non-negative random variable S such that

the PDF of the random vector conditioned on S is a multivariate Gaussian PDF.

We consider the product given by X = ZS, where X = [X1 ... XN]T denotes the SIRV,

Z = [Z1 ... ZJ]T is a Gaussian random vector with zero mean and covariance matrix M and
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S is a non-negative random varbible with PDF fs(e). Since it is desirable to independently
control the correlation properties and the non-Gaussian envelope PDF, Z and S are assumed to

be statistically independent. The PDF of X conditioned on S is (see eq (3.14))

fXiS(xlj ) = (2r)- IMI- s-eNzp(-- (5.1)

where p is a non-negative quadratic form given by p = xTM-lx and IMI denotes the determinant

of the covariance matrix M. The PDF of X is given by (see eqs (3.15) and (3.16))

fx(x) = (27r)-flMj1hN(p) (5.2)

where

hN(p) = 00s-Nexp(--Ls2)fs(s)ds. (5.3)

The PDF of the random variable S is called the characteristic PDF of the SIRV. Therefore, it is

apparent that the PDF of a SIRV is completely determined by the specification of a mean vector,

a covariance matrix and a characteristic first order PDF. In addition, the PDF of the SIRV is a
function of a non-negative quadratic form. However, unlike the Gaussian case, dependence on

the quadratic form is more complicated than the simple exponential. Therefore, an SIRP can

be regarded as a generalization of the familiar Gaussian random process. We point out that the

covariance matrix of the SIRV is given by E = ME(S 2) where E(S 2 ) is the mean square value of

the random variable S. It is seen that the covariance matrix of the SIRV normalized by the mean

square value of S is the covariance matrix of the Gaussian random vector. Note that it is possible

to set the covariance matrix of the SIRV equal to that of the Gaussian random vector by requiring

that E(S 2) be equal to unity. The desired non-Gaussian PDF can be obtained by choosing fs(s)

appropriately. Thus, it is seen that the SIRV formulation for radar clutter modeling affords

independent control over the non-Gaussian PDF of the clutter and its correlation properties.

Several techniques are available in Chapter 4 for obtaining hN(p). Note that the Gaussian

random vector is a special case of an SIRV and is obtained when fs(s) = b(s - 1) where 6(t)
is the unit impulse function. An interesting interpretation of the representation theorem is that

every SIRV is the modulation of a Gaussian random vector by a non-negative random variable.

Many of the attractive properties of Gaussian random vectors also apply to SIRVs. The most

relevant property of SIRVs for the purpose of computer simulation is the closure property under
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lnear transformation [28] stated below (see Theorem 2):

If X is an SIRV with characteristic PDF fs(s), then

Y = AX + b (5.4)

is also an SIRV with the same characteristic PDF. It is assumed that AAT is a nonsingular

matrix and b is a known vector having the same dimension as X.

Theorem 2 provides us with a powerful technique for simulating SIRVs. A white SIRV' is

defined as one that has a diagonal covariance matrix. In other words, the components of the

white SIRV are uncorrelated but not necessarily independent. We can start with a zero mean

white SIRV X having identity covariance matrix and perform the linear transformation given by

eq (5.4) to obtain an SIRV Y having a non-zero mean and desired covariance matrix E. The

matrix A and the vector b are given by

A = EDi
(5.)

b = y

where E is the matrix of normalized eigen vectors of the covariance matrix E, D is the diagonal

matrix of eigen values of E and py is the desired non-zero mean vector.

In many instances it is not possible to obtain fs(s) for an SIRV in closed form, even though

its existence is guaranteed. In such cases, an alternate approach must be used in order to

characterize the SIRV. The following theorem can be used to completely characterize a white

SIRV having zero mean and identity covariance matrix (see Theorem 3):

A random vector X = [X1 ... XNIT is a zero mean white SIRV having identity covariance

matrix if and only if there exist random variables R E (0,oo), e E (0,2ir) and Ok E (0,7r),

(k = 1,... N - 2) such that when the components of X are expressed in the generalized spherical
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coordinates

X, = Rcos(fl)

Xk = Rcos(01,)'Ilk-1 sin(fi) (1 < k_5 N -2)

XN-i = Rcos(O) r'IN 2 sin(0,) (5.6)

XN = R sin(O) 111-2 sin(tj)

then the random variables R, e and Ok are mutually and statistically independent hating PDFs

of the form

fR(r) =z..1f)hN(r 2)u(r)
f~bh~ok)N-1-k

fA(r sinq(k - u(o- - 70)]r (F-P)(5.7)

fe(O) = (21r)- 1[u(0) - u(O - 2r)]

where [(a) is the Eulero Gamma function and u(t) is the unit step function.

As a consequence of Theorem 3, any SIRV with zero mean and identity covariance matrix

can be represented in generalized spherical coordinates which are mutually and statistically

independent regardless of the SIRV considered. Also, note that the PDFs of 0 and k, (k =

1,... N - 2) are functionally independent of the white SIRV considered. Only the PDF of R

changes from one white SIRV to another. Note that R2 = ENI Xk = XTX. Hence R is the

norm of the SIRV.

Another important feature of the SIRV is that the quadratic form appearing in its PDF contains

all the information necessary to identify the PDF. It follows that knowledge of the PDF of the

quadratic form of the SIRV is sufficient to identify the PDF of the corresponding SIRV [34] (see

Theorem 4):

The PDF of the quadratic form appearing in eq (5.2) is given by

ofp(p) = _-,,_ 1 2 _hN(p) (0 < P < oo) (5.8)

and remains unchanged regardless of whether or not the SIRV is white.
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The theorems reviewed in this section will be made use of in the proposed simulation approach,

discussed in Section 5.3, and in assessing -the performance of the simulation procedure, discussed

in Section 5.4.

In the context of the problem of radar clutter modeling and simulation, the bandpass process

Y(t) = Re[k(t)exp(jwot)] can be expressed in terms of the equivalent complex, wide sense

stationary random processes k(t). More precisely, we obtain N complex samples by sampling

the complex random process :Y(t) + jY.(t), where the subscripts c and a denote the in

phase and out of phase quadrature components. This is equivalent to working with a real vector

of 2N quadrature components which is the approach taken in this chapter. Therefore, the results

presented in this section are applied to the problem of radar clutter modeling with N replaced

by 2N. For ease of reference, the library of non-Gaussian SIRV PDFs obtained in Chapter 4 is

repeated here. However, h2N(p) for those SIRVs for which the charactetistic PDF is known are

listed in Table 5.1. The corresponding characteristic PDFs are listed in Table 5.2. Table 5.3 lists

h2N(p) for those SIRVs whose characteristic PDF is unknown.

5.3 Two Canonical Simulation Procedures for Generating SIRVs

In this section, we concern ourselves with two simulation procedures for generating the SIRVs

listed in Table 5.1 and Table 5.2. The first simulation procedure to be discussed is applicable

when the characteristic PDF, fs(s), is known. For each of the PDFs listed in Table 5.1, the

characteristic PDF fs(s) is tabulated in Table 5.3, where E(S2) = 1. Since the representation

theorem results in the covariance matrix of the SIRV being given by E = ME(S2), the choice

of E(S 2) = 1 makes E identical to M, the covariance matrix of the Gaussian random vector

Z. However, as listed in Table 5.4, the PDFs commonly encountered in statistical tables do not

have unit mean square value. In order to obtain the random variable S, having unit mean square

value and the corresponding PDF fs(s), we generate the random variable V having PDF fv(v)

and mean square value E(V2) = a2 , and perform the linear transformation S = ' to obtain the
a

desired S. In Table 5.1, and Table 5.4, the scale parameter b, as well as the shape parameter v

are identical in both cases and u(v) denotes the unit step function. The simulation procedure

for these SIRV PDFs is fairly simple and is stated below:
5.3.1 Simulation Procedure for SIRVs with Known Characteristic PDF

(1) Generate a white zero mean Gaussian random vector Z, having

identity covariance matrix.
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(2) Then generate a random variable V from 6he PDF fv(v). Denote

the mean square value of V by a2.

(3) Normalize the random variable V by a to obtain the modulating

random variable S. In other words generate S =

(4) Generate the product given by X = ZS. At this step, we have a

white SIRV having zero mean and identity covariance matrix.

(5) Finally, perform the linear transformation given by eq (5.5) to

obtain the SIRV Y with desired mean and covariance matrix.

Fig 5.1 shows the simulation procedure presented above.

The subroutine RNNOR in IMSL was used for generating the Gaussian random vector Z.

Interestingly enough, the PDFs listed in Table 4.4 can be related to the PDF of the Gamma

distribution as discussed below. The PDF fv(v) for the K-distributed SIRV is a Chi PDF. We first

address the random variable generation for the Chi PDF and then provide the transformations

for obtaining the random variables for the other PDFs listed in Table 4.4.

Consider the standard Gamma distribution given by

fT(t) = !exp(-t) t> 0 (5.9)

17(a)

where a denotes the shape parameter and 1(a) is the Eulero- Gamma function. The random

variable T is readily generated by using the IMSL subroutine RNGAM. The procedure for gen-

erating the Chi distributed random variable V needed for the K-distributed SIRV is summarized

below.

1. Generate the random variable T from the standard Gamma distribution

of eq (5.9) by using the IMSL subroutine RNGAM.

2. Perform the transformation V =A

The PDF fv(v) for the Laplace SIRV is a Rayleigh PDF and is obtained from fv(v) of the

K-distributed SIRV by letting a = 1. The random variable V for the PDF f,,(v) listed in

Table 4.4 for the Student-t SIRV is obtained from the standard Gamma PDF of eq (5.9) by the

transformation V = b and letting a = v. Finally, the PDF fv(v) for the Cauchy SIRV is
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Table 5.1: h2N(p) for SIRVs with Known Characteristic PDF
Marginal PDF h2N
Laplace . b"'1V p -• IKN (bv')

Cauchy 2Ir(J +NK-distribution 
UN RKN-a(bV'•)

tudeitt-t 2I Pff

Table 5.2: h2N(p) for SIRVs with Unknown Characteristic PDFs

Marginal PDF h2N(p)
Chi (-2)v-'A =Gp V-kexp(-Bp)

_ N = -( )k I I

BA= r 2A,

<1I

Weibull = CMp'- exp(-Apt)
_....... A = aob

C k = E k = ( -1 ) m + N 2 N . ( k r. , + . Lm r(-I+-* -Nv)

Gen. Rayleigh EkL--i' Dkpaf-Iv+Ie-Tp(-BpW)"

A = 0 2I)

B=

D = -k (.j)m +N-12N -11-ý ( k ) ri+!EýD M=I M'm~ j r(2+or-N)

.ician 2N* E N ( i)k(Pl2)k., 1 p(-A)

f mO = )k Ik..2m(pA), A=( M

obtained from fv(v) of the Student-t SIRV by letting v 1. The procedure for generating the

random variable V needed for the Student-t SIRY is summarized below.

1. Generate the random variable T from the standard Gamma distribution

of eq (5.9) by using the IMSL subroutine RNGAM.

2. Perform the transformation V = 6A.

5.3.2 Simulation Scheme for SIRVs with Unknown Characteristic PDF

We now concern ourselves with the second simulation procedure which is applicable when

the characteristic PDF is unknown, as is the case for SIRVs listed in Table 4.2. The alternate

approach makes use of Theorem 3 and the representation theorem. As pointed out previously,
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Table 5.3: Characteristic PDF for SIR'ls listed in Table 4.1 [E() 1]

Cauchy a262$e3eZE(- TUaS
K-dLaplace io ab2ý.,z(bas)1- L p- )u(s)HStudent-t ____________________ U__S_

___________Table 5.4: Related PDF fv(v)

SMarginal PDF fvfv- ' av= E(V3
Laplace b2vezp(- tir)U(V) . -

Cauchy b2V-3eZp(--kv')U(V)
K-distribution r 2.ATb `ez( iý)V if

Gaussian Random zx Linear Transformation

Number Generator Y n AX +B

ESaV/a

Figure 5.1: Simulation Scheme for SIRVs with Known Characteristic PDF
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the PDFs of O and $k (k = 1, 2,..., N - 2) are independent of the white SIRV being considered.

Only the PDF of R changes from one white SIRV to another. As a result, the second simulation

procedure requires the capability to generate the random variable R whose PDF is given by

eq (5.7). Since the Gaussian random vector belongs to the family of SIRVs, a zero mean white

Gaussian random vector Z with identity covariance matrix admits a representation of the form

of eq(5.6). Let RG denote the norm of the white Gaussian random vector. The simulation

procedure is stated below:

(1) Generate a white, zero mean Gaussian random vector Z having

identity covariance matrix.

(2) Compute the norm RG = lIZII = -ATizZ of the white Gaussian

random vector.

(3) Generate the norm R = l[XII = vrk of the white SIRV from

the PDF of R given by eq (5.7).

(4) Generate the white SIRV X by taking the product X = Z--.

(5) Finally, perform the linear transformation given by eq (5.5) to

obtain the SIRV Y with desired mean and covariance matrix.

The simulation procedure is shown schematically in Fig 5.2.

Note that this simulation procedure avoids the explicit generation of the variables 0 and

4)k (k = 1,... N - 2). The generation procedure for a white Gaussian random vector is

well known. Therefore, we need to concern ourselves only with the development of a suitable

generation scheme for the norm R of the white SIRV X. Generation of the norm R is not trivial.

This is due to the fact that the PDF of R is usually not in a simple functional form. Consequently,

it may not be possible to conveniently evaluate analytically the distribution function and its

inverse. As a result, generation methods based on the inverse distribution function do not offer a

practical solution to this problem. Therefore, in this chapter we generate R by making use of the

approach called the 'Rejection Method'. The rejection method can be used to generate random

variables whose cumulative distribution functions are not known, but whose PDFs are known

explicitly [49]. The rejection procedure assumes knowledge of the maximum value of the PDF

of R for a given SIRV PDF and a finite estimate to the range of the PDF of R so that the area
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Z XLinear Transformation
Number Generator • -• y

/Y" AX÷BD

•R" I do

Figure 5.2: Simulation Scheme for SIRVs with Unknown Characteristic PDF

under the PDF curve is close to unity. These quantities are denoted by c and b, respectively. We

discuss the rejection procedure in detail in Appendix B. The Rejection method is summarized

below:

(1) Generate a uniform random variate U1 on the interval (0, b).

(2) Generate another uniform variate U2 on the interval (0, c).

(3) If U2 < fR(Ul), then R = U1. Otherwise, reject U1 and return to

step 1.

Note that the simulation procedures of Fig 5.1 and Fig 5.2 are canonical in the sense that

their forms remain unchanged from the simulation of one SIRV to another. Even though, the

scheme of Fig 5.2 can be used even when fs(s) is known, the scheme of Fig 5.1 is preferred when

S can be generated easily. The linear transformation of eq (5.5) is a filtering operation. In both

schemes, pre-modulation filtering is equivalent to post-modulation filtering. This results from

the fact that the representation theorem is valid whether or not the SIRV X and the Gaussian

random vector Z are white.
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5.4 Performance Assessment of the Simulation Schemes

In this section we concern ourselves with the performance assessment of the simulation proce-

dures developed in section 5.3. We point out that the simulation procedures developed in section

5.3 are exact in the sense that they are derived without approximation from theory. Hence,

departures from the exact SIRVs will depend for the most part on the nonideality of the uniform

random number generators used. Empirical assessment of the simulation procedures is necessary

for practical applications.

One possible approach for assessing the distributional properties of the simulated data is to

perform a hypothesis test on the marginal distributions of the components of the SIRV where

the hypothesis are given by

Ho:The hypothesis that the simulated data is from the desired distribution

H1:The hypothesis that the simulated data is not from the desired distribution.

For a fixed Type-1 error probability (i.e., the probability that H1 is accepted given that Ho is

true) each marginal distribution can be checked by employing one of the commonly used goodness

of fit procedures. Since the components of the random vectors are not statistically independent,

we are now confronted with the problem of developing a goodness of fit test for the multivariate

data. In general, it is very difficult to obtain the overall significance level of the test (i.e., the

probability that Ho is accepted given that Ho is true) for the multivariate goodness of fit testing

procedure.

However, an attractive feature of SIRVs is that the quadratic form p appearing in the SIRV

PDF contains all the information necessary for identifying the PDF of the SIRV. In other words,

knowledge of the PDF of the quadratic form is sufficient to determine the underlying SIRV PDF.

Furthermore, the quadratic form PDF remains unchanged regardless of whether the SIRV is white

or colored. The PDF of the quadratic form appearing in the SIRV PDF is given by eq (5.8). For

the radar problem where we deal with N complex samples or 2N quadrature components, note

that we make use of eq (5.8) with N replaced by 2N. Hence, we base our goodness of fit test

procedure for the generated SIRVs on the PDF of the quadratic form p. Note that we have now

reduced the multivariate problem to an equivalent univariate problem involving the goodness of

fit test for the PDF of the quadratic form.

In the examples presented in this section, we generated m = 1000 realizations of the random

vector Y with N = 2 complex samples and obtained one thousand samples of the quadratic form
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P for each of the non-Gaussian SIRVs whose PDFs are listed in Tables 5.1 and 5.3. In each case,

we used the corresponding theoretical PDF of the quadratic. form given by eq (5.8) to test for

the distribution of the generated quadratik form. The frequency histograms for the generated

data and the corresponding theoretical PDFs are shown in figures 5.3-5.10. In addition, a Chi-

Square test was performed on the generated data with the Type-1 error fixed at 0.05 and the

null hypothesis was not rejected in each case. The histograms provide a good idea about the

true distributions for large sample sizes, Observe that the empirical PDFs are very close to

the theoretical PDFs. Note that the procedure used in this section to assess the distributional

assumptions of the random samples from the SIRV PDFs is a formal goodness of fit test. Similar

procedures have been proposed to test for multivariate normality in [50] and [51].

5.5 Conclusions

In this Chapter, we have presented two schemes that can be us.d in practice to simulate

correlated non-gaussian radar clutter when the clutter can be modeled as a spherically invariant

random process. We pointed out that the simulation schemes developed are canonical schemes

and do not change form from the simulation of onie SIRV to another. A new approach, based on

the PDF of the quadratic form appearing in the SIRV PDF, was used to perform a goodness of fit

test in order to assess performance of the proposed simulation schemes. Performance assessment

based on this scheme showed excellent agreement between the theoretical and empirical PDFs of

the quadratic form. Finally, it was pointed out that use of this technique reduced the goodness

of fit test from a multivariate testing procedure to a univariate testing procedure resulting in

tremendous processing simplicity. Therefore, this procedure lends itself very well to practical

applications.
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Figure 5.3: Theoretical and Empirical Quadratic form PDFs for Laplace SIRV
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125



• 'r" '-r-r "t-1-• --l"t-1-'r t r-r t-1- - r" -t-r 1--t- r 1 -1--["

0 1 2 3

4,

Figure 5.6: Theoretical and Empirical Quadratic form PDFs for Student-t SIRV
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Figure 5.7: Theoretical and Empirical Quadratic form PDFs for Chi distributed SIRV
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Figure 5.9: Theoretical and Empirical Quadratic form PDFs for Weibull SIRV
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Chapter 6

A New Method for Univariate

Distribution Approximation

6.1 Introduction

In this chapter we address the problem of approximating the PDF of a set of random data.

In practice, the clutter PDF encountered in radar signal processing is not known apriori. Con-

sequently, a scheme that appioximates the clutter PDF based on a set of measured data is

necessary. Currently, available tests such as the Kolmogorov-Smirnov test and the Chi-Square

test address the problem of goodness-of-fit for random data. In particular, these tests provide

information about whether a set of random data is statistically consistent with a specified dis-

tribution, to within a certain confidence level. However, if the specified distribution is rejected,

these tests cannot be used for approximating the underlying PDF of the random data. Moreover,

these tests require large sample sizes for reliable res-l ts.

In practice, only a small number of samples may be available. Therefore, the scheme used

should be efficient for small sample sizes. A new algorithm based on sample order statistics has

been developed in [50] for univariate distribution identification. This algorithm has two modes of

operation. In the first mode the algorithm performs a goodness-of-fit test. Specifically, the test

determines, to a desired confidence le\ i, whether random data is statistically consistent with a

specified probability distribution. In the second mode of operation the algorithm approximates

the PDF underlying the random data. In particular, by analyzing the random data and with-

out any a priori knowledge, the algorithm identifies from a stored library of PDFs that density

function which best approximates the data. Estimates of the scale, location, and shape param-
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eters of the PDF are provided by the algorithm. The algorithm typically works well with small

sample sizes of between 50 and 100 samples. An extension of this algorithm for the multivariate

Gaussian PDF has been considered in [50] and [52].

In this chapter we describe a new method for univariate distribution approximation. In section

6.2 we present definitions. Section 6.3 describes the algorithm developed in [50] for univariate

distribution identification. The proposed distribution identification algorithm is discussed in

Section 6.4. Section 6.5 proposes a method to estimate the shape parameter based on the

procedure developed in Section 6.4. Finally, conclusions are presented in Section 6,6.

6.2 Definitions

Let fy(y) denote the PDF OF Y which has been standardized in a specified manner. Introduce

the linear transformation defined by

X = Py + C' (6.1)

The PDF of X is given by
1X (X •x-a (6.2)

where a and 6 are defined to be the location and scale parameters of X, respectively. The mean

p., and variance a, of the random variable X are given by

p, = E(X) (6.3)

a. = E[(X - p)]

Although the mean and the variance are related to the location and scale parameters, note that

the location parameter is not the mean value and the scale parameter is not the square root of

the variance, in general. However, for a standardized Gaussian PDF fy(y) for which the mean is

zero and the variance is unity, the location parameter is the mean of X and the scale parameter

is the standard deviation (square root t,.' the variance) of X.

The coefficient of skewness, a 3 , and the coefficient of kurtosis, a 4, are defined to be

E[(X-A,,)3
a3 = (6.4)

a U(X-A,,) 4]
C34 = O,*
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It is readily shown that a3 and N are invariant to the values of p. and q,,. For any PDF tbat

is symmetric about the mean, a 3 = 0. For the case of the Gaussian distribution, a 3 = 0 and

a 4 =-3.

6.3 Goodness of Fit Test

In this section, we introduce a general graphical method for testing whether a set of random

data is statistically consistent with a specified univariate distribution. The proposed method

not only yields a formal goodness-of-fit test but also provides a graphical representation that

gives insight into how well the random data is representative of the specified distribution (null

hypothesis). Using the normal distribution as a reference distribution, the standardized sample

order statistics are represented by a system of linked vectors. Both the terminal point of these

linked vectors and the shape of their trajectories are used in determining whether or not to accept

the null hypothesis.

In this section we first give a brief description of the corresponding test statistic and then

explain the goodness of fit test procedure. For illustration purposes, we assume that the null

distribution is Gaussian. However, the proposed procedure works for any null hypothesis.

Let Xk; k = 1, 2,... n denote the 'th sample from a Gaussian distribution with mean p and

variance a'. We define
Yk = S k = 1,2,... ,n (6.5)

where X = Y2Xk/n is the sample mean and S = {E(X, - 7) 2/(n - 1)}1/2 is the sample standard

deviation. The standardized order statistics are denoted by Y%:" i = 1, 2,... n and are obtained

by ordering the Yk; k = 1,2,... n such that Yi:,, !5 Y2:,, < ... < Y,.,,,. The i"' linked vector

is characterized by its length and orientation with respect to the horizontal axis. Let X1 :,, <

X 2.: <! ... < Xn:, denote the ordered samples obtained by ordering Xk; k = 1,2,... n. Let

Mmi, m 2 :.,,..., mn:,n denote the expected values of the standard normal order statistics, where

mi:,m = E[lLi:]. The length of the ith vector ai is obtained from the absolute value of the
ith standardized sample order statistic Y,:n, while its orientation 0, is related to mi:,,. More

specifically, b. definition,
ai•

n 
(6.6)

0, = 7r4D(?71in)

where 4ý(x) = (v/2"•)-' f., exp(-'-)dt is the distribution function of the standard Gaussian
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distribution. We define the sample points Qk in a two dimensional plane by

Qk = (Uk, Vk) k =1,2,..,n (6.7)

where Uo = Vo = 0 and

Uk = E~i 2L{Co8(0i)}IJY;nI

Vk = 1 (6.8)

k = 1,2,...n.

The sample linked vectors are obtained by joining the points Qk. Note that Qo = (0, 0). It should

also be noted that the statistic Q, given in eq (6.7) represents the terminal point of the linked

vectors defined above. Figure 6.1 shows the linked vectors obtained for the Gaussian distribution

with n = 6. The null distribution was obtained by averaging the results for 50,000 Monte Carlo

trials. The solid curve in Figure 5.1 shows the linked vectors for the sample distribution while

the dashed curve shows the linked vector for the null distribution. The magnitude and angles of

the linked vectors are obtained from eq (6.6). Note that the angles are independent of the data

and depend only on the sample size n. Only the magnitudes of the linked vectors are dependent

on the samples drawn and change from one trial to another.

For a typical set of ordered samples (i.e., ordered samples drawn from the null distribution)

it is reasonable to expect that the sample linked vectors would closely follow the null pottern.

Jf the ordered set of samples is not from the null distribution, the sample linked vectors are not

expected to closely follow the null pattern. Hence, the procedure provides visual information

about how well the ordered set of samples fit the null distribution.

An important property of the Q,, statistic is that it is invariant under linear transformation.

In particular, we consider the standardization used in eq (6.5). Let Zi = aXi + b, where a and

b are known constants. Let S' denote the sample standard deviation of the samples Zi. Then,

it is readily shown that • = . The invariance property follows as a consequence. The

advantage of this property is that the PDF of Q,, = (U,, V,,) depends only on the sample size

n and is unaffected by the location and scale parameters. Since it is difficult to determine the

joint PDF of U,, and V,, analytically, it is necessary to obtain empirical results.

Assuming that the conditions under the central limit theorem are satisfied, the marginal PDFs

of U,, and V,, can be approximated as Gaussian, in the limit of large n. In addition, it is assumed
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that the joint PDF of Un and Vn is approximately bivariate Gaussian. Consequently, all that is

needed to determine the bivariate PDF is the specification of E(U1), E(Vn), E(UnVn), Var(Un)

and Var(V,,). Drawing samples from the Gaussian distribution, it has been shown empirically

in (50] that for 3 < n < 100

E(Un) =0

E(VK) =p t 0.326601 + 0.412921n

E(UnVn) =0 (6.9)

Var(UL) = a2 s 0.02123± 0.01765
nt n'a

Var(Vn) = ",2, -_ 0.04427 0.0951n nT-'-"

Since Un and Vn are approximately bivariate Gaussian for large or moderate sample sizes, their

joint PDF can be written as

fuk, v(un, v.) = (2r)-f(ou,,)-'exp(--) (6.10)

where
ut (v. -j) 2  (6.11)
a2 +

L e t t -- to . T h e n th e e q u a tio n !2 ( - P ,) ' (6 .1 2 )
un2 + a _•2 (.2to =-i+ •

U U

is that of an ellipse in the tin, Vn plane for which

f~, n tnvn (7r-(acr)'ep( O) (6.13)

Points that fall within the ellipse correspond to those points in the Un, Vn plane for which

to (.4
fU.,v.(Un, vn) > (27r)-(aua•)-lexp(- t). (6.14)

Let

P(T > to) = P(un, Vn fall outside the ellipse given by ec (6.12)). (6.15)
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It is well known that the PDF of the random variable T defined by eq (6.11) hld a Chi-Square

distribution with two degrees of freedom [53] and is given by

hT(t) = 0.5exp(--), (t.16)

Hence,

a 1 (6.1,7)

Consequently, to = -. 21n(1 - a). Thus, eq (6.12) becomes

un + = -21n(1 - a). (6.18)

a is known as the sig.-ificance level of the test. It is the probability that Q," falls outside the

ellipse specified by eq (6.18) given that the data is coming from a Gaussian distribution. 1 -- a

is known as the confidence level and the corresponding ellipse is known as the confidence ellipse.

Eq (6.12) can be written in the standardized form

""-+o A) (6.19)
1= 't aU-- a+(nrt°

where the lengths of the major and minor axes are given by max [auv(t, a'vrt"] and min [oauV/, aov

respectively. From eq (6.17), observe that smaller values of a correspond to larger values of t o.

Consequently, the confidence ellipses become larger as the confidence level is increased.
For a given sample size n (n < 100) approximate values of v, a2 and o• can be obtained

from eq (6.9). The confidence ellipse of eq (6.18) can then be used to make a visual test of the

null hypothesis. If the terminal sample point falls inside the ellipse, then the data is declared as

being consistent with the Gaussian distribution with confidence level 1 - ca. Otherwise the null

hypothesis is rejected with a significance level a.

A major difficulty in determining the joint PDF of Un and V, is that the coefficients of skewness

and kurtosis of U, and V,, (see Table 5.1) indicate that the Gaussian approximation for the

bivaritate PDF may not be satisfactory for n < 10. The empirical bivariate PDF of U,1 and

V, were obtained by using 50,000 Monte-Carlo trials for n--3, 10, 20,30, 50 and 100. The

corresponding probability contours are shown in Figure 6.2. The same procedure is used even

when the null distribution is different from the Gaussian distribution. However, note that the
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standard Gaussian distribution is always used as the referance distribution for determining the

angles Oi.

6.4 Distribution Approximation

In this eection we present a graphical procedure for approximating the underlying PDF of a

set of random data based on the goodness-of-fit test procedure discussed in section 6.3.

Following a similar approach to that outlined in section 6.3, random samples are generated

from many different univariate probability distributions. For each specified distribution and for a

given n, the statistic Q,, = (U,,, K) given by eq (6.8) is obtaincd for various choices of the shape

parameter. Thus, each distribution is represented by a trajectory in the two dimensional plane

whose coordinates are Ui, and V,,. Figure 6.3 shows aa example of such a representation. Twelve

distributions, namely Gaussian (1), Uniform (2), Exponential (3), Laplace (4), Logistic (5),

Cauchy (6), Extreme Value (7), Gurnbel type-2 (8), Gamma (9), Pareto (10), Weibull (11) and

Lognormal (12), are represented in this chart. The value of Q,. at each point of the trajectories is

obtained by Monte-Carlo experiments using the standard Gaussian distribution as the reference

distribution for determining the angles 6i. The results are based on averaging 1000 trials of 50

samples from each distribution. The samples from each distribution are obtained by using the

IMSL subroutines for specilied values of the shape parameter. Since the procedure is location

and scale invariant, the trajectory reduces to a single point for tho,.e PDFs which do not have

shape parameters but are characterized only in terrrt of their location and scale parameters. By

way of example, the Gaussian, Laplace, Exponential, Uniform and Cauchy PDFs are i'epresented

by single points in the U,, - V,, plane. However, those PDFs which have shape parameters arI

represented by trajectories. For a given value of the shape parameter, a single point is obtained

in the Ui, - V,, plane. By varying the shape parameter, isolated points are determrned along

the trajectory. The trajectory for tbe PDF is obtained by joining these poirts. In a sense the

trajectory represents a family of PDFs having the same distribution but with different shape

parameter values. For example, the trajectory corresponding to the Gamma distribution in

Figure 6.3 is obtained by joining the points for which the shape parameters are 0.2, 0.3, 0.5, 0.7,

1.0, 2.0, 3.0, 4.0, 6.0, 10.0. As the shape parameter increases, note that the Gamma distribution

approaczhes the Gaussian distributic.on. The representation of Figure 6.3' is called an identification

chart. Some distributicns such as the # distribution and the SU-Johnson systera of distributions,

have two shape para.netcrs. For these case3, the trajectories are obtained by holding one shape
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parameter fixed while the other is varied. For these distributions, several different trajectories

are generated in order to cover as much of the U,, - V4 plane as possible. For certain choices of

the shape parameters, two or more PDFs become identical. When this occurs, their trajectories

intersect on the identification chart.

It is apparo-nt that the identification chart of Figure 6.3 provides a one to one graphical

representation for each PDF for a given n. Therefore, every point in the identification chart

corresponds to a specific distribution. Thus, if the null hypothesis in the goodness-of-fit test

discussed in section 6.3 is rejected, then the distribution which approximate3: the underlying

PDF of the set of random data can be obtained by comparing Q, obtained for the samples with

the existing trajectories irn the chart. The closest point or trajectory to the sample Q,, is chosen

as an approximation to the PDF underlying the random data. The closest point or trajectory

to the sample point is determined by projecting the sample point Q,, to neighboring points or

trajectories on the chart and choosing that point or trajectory whose perpendicular distance

from the sample point is the smallest. The complete approximation algorithm is summarized as

follows.

1. Compute Yk as specified in section 6.3

2. Obtain the standardized order statistic Yi:,,.

3. Compute U,, and V,, from eq (6.8).

4. Obtain an identification chart based on the sample size n as discussed

in this section. Plot the sample point Q,, on this chart.

5. Compare the sample point Q,, with the existing distributions on the

chart. The nearest neighboring point (or trajectory) on the chart is

used as an approximation to the PDF of the samples.

The accuracy of this procedure can be increased by including as many distributions as possible

in the identification chart. However, it is emphasized that this procedure does not identify the

underlying PDF. Rather it identifies a suitable approximation to the underlying PDF.

6.5 Parameter Estimation

Once the distribition of thei samples is approximated, the next step is to estimate its pa-

rameters. The method discussed in section 6.4 lends itself for estimating the parameters of the
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approximated distribution. We present the estimation procedure for the location, scale and shape

parameters in this section.
6.5.1 Estimation of Location and Scale Parameters

Let f(x; a, l, ) denote the distribution which approximates the PDF of the set of random data,

where a and P are the location parameter and scale parameter, respectively of the approximating

PDF. Let Xi:,, denote the ordered statistics of X from a sample of size n. The standardized

ordered statistics are defined by

w._ = X,:n - a (6.20)

Let
/,..= E[W,:n.] (6.21)

Then

E[Xi:,] =,.Si:n + a (6.22)

We consider the following statistics

TI = Ei COS(Oi)Xi:n (6.23)

T2 = Ei Sin(Oi)Xi:n

where 6i is the angle defined in eq (6.6), The expected values of T, and T2 are

E[TI] = Ej COS(Oi)[f1iAj:n + 1] (6.24)

E[T2] = Y2 Sin(Oj)[Ibji:n + a].

These can be written as

E(TI) = ace + bp (6.25)

E(T2) =ca+d/3
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where

a = E, Cos(0G)

b - E£ •,r.Cos(6j) (6.26)

c = E, Sin(0)

d = EE j , Sin(0j).

Because the standardized Gaussian distribution is used as the reference distribution for Oi, it can

be shown that a = 0. It follows that

[p (6.27)

El T2-dt~j
C

where the symbol A is used to dente an estimate. For n sufficiently large (i.e., n > 50), suitable

estimates for E[Ti] and EýTJ] are

j =( 6 .2 8 )

/[T 2] =T2.

Estimates for b and d rely upon an estimate of j,:,. Aj.- is obtained from a Monte Carlo simulation

of Wi:n where Wi:n is generated from the known approximating distribution f(x; 0, 1) having zero

location and unity scale parameters. Aim is the sample mean of Wi:n based upon 1000 Monte

Carlo trials. Having ifn, the estimates for b and d are given by

b = X^'fu:nCos(0i)P.o 
(6.29)

d = E'•f :Sin(O,).

The scale and location parameters are then estimated by application of eq (6.27).

0.5.2 Shape Parameter Estimation

In this section we present an approximate method for estimating the shape parameter of the

approximating PDF. This procedure can be used only when one of the shape parameters is

unknown. Let -y denote the shape parameter of the approximating PDF being estimated. Since

U, and V,, are location and scale invariant, the point Q, depends only on the sample size n and
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the shape parameter -j. The expected value of U,( anid V,, can be expressed as

E(U,) = (p,(n,-/) (6.30)

E(V.S) = V(,,-0

where o ,(., .) ((.) are some functions of -y and n. For a given sample size n and shape parameter

7o the corresponding expected point oI(n, '70), Wp2(n, -7o) can be determined approximately in the

Un - V,, plane.

The proposed shape parameter estimation method is based on finding a point such that

U,,= - p(n, 5,) (6.31)

Vn = W2 (n,'•

where ^5 is the sample estimator of 7. However, in many instances the sample point may not

correspond exactly to a particular trajectory. In such a case, let E(Q1 n) = (ul, v1) E(Q2n) =

(u2, v2) denote the expected points corresponding to two different shape parameter values y = -/I

and -j = 'f2. It is assumed that the sample point lies in between the points corresponding to -Yi

and -t2. Assuming that linear interpolation provides a satisfactory approximation, the estimate

of the shape parameter corresponding to the sample point is given by

•-t + (-/2 - 7i)(Xo - u1 ) (6.32)
(u2 - u()

where
xO" {A(Vn-v )+A2u1i+U}(A2+1) (6.33)

A (2-,V1)"

The accuracy of the procedure can be improved by employing a non-linear interpolation method.

It must be emphasized that the shape parameter estimation procedure presented in this section

is an approximate procedure.

6.6 Conclusions
This chapter has presented a new algorithm for analyzing univariate random data. The algo-

rithnm provides a graphical representation for goodness-of-fit test which determines whether a set
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Samplo Linked Vectors

of random data is statistically consistent with a specified PDF. Also, a graphical procedure is

presented for the problem of approximating the underlying PDF of a set of random data. Esti-

mation of location, scale and shape parameters of the approximating PDF have been discussed.

Finally, it must be pointed out that the chief advantage of the algorithm presented in this chapter

is that it works well for small sample sizes between 50 and 100 samples.
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Chapter 7

Distribution Approximation of Radar

Clutter by SIRPs

7.1 Introduction

This investigation is motivated by a desire to characterize correlated non-Ga~ussian radar clutter

by approximating the underlying probability density function of the clutter. Various investigators

have reported experimental results where non-Gaussian marginal probability density functions

(PDF) have been used to model the clutter. Usually, radars process N samples at a time.

Statistical characterization of the clutter requires the specification of the joint PDF of the N

samples. In addition, the clutter may be highly correlated. Hence, the joint PDF must take into

account the correlation between samples. Statistical characterization of the clutter is necessary

if an optimal radar signal processor is to be obtained. For use of the well known likelihood ratio

test, it is desirable to have closed form expressions for the joint PDF of the N clutter samples

in order to obtain the optimal radar signal processor. The joint PDF of the N clutter samples

can be easily specified when the clutter is Gaussian. However, when the clutter is non-Gaussian

and is correlated, many different joint PDFs of the clutter samples can result in the same set of

marginal (univariate) distributions having a specified non-Gaussian behavior. The multivariate

non-Gaussian PDF can be specified uniquely only when the randcm variables are statistically

independent.

Specification of the multivariate PDF is generally a non- trivial problem with no simple best

solution [54]. As explained earlier, the theory of Spherically Invariant Random Processes (SIRP)

provides a powerful mechanism to obtain the joint PDF of the N correlated, non-Gaussian clutter
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samples. Many of the tractable properties of the Gaussian random process also apply to SIRPs.

SIRPs have received considerable attention over the past two decades since most of the elegant

and mathematically tractable properties of the multivariate Gaussian distribution generalize to

this class of distributions. Applications of SiRPs can be found in the random flight problem [27],

signal detection [29], speech signal modeling [30] and radar clutter modeling [32] and [34].

In this Chapter, using certain properties of SIRPs, we adopt an algorithm developed in [50]

to identify the underlying distribution of a given set of data. Section 7.2 provides background

information about SIRPs. In Section 7.3 we present a procedure for the goodness of fit test

for PDFs arising from SIRPs. The proposed distribution identification algorithm is discussed

in Section 7.4. Section 7.5 proposes a method to estimate the shape parameter based on the

procedure developed in Section 7.4. Finally, conclusions are presented in Section 7.6.

7.2 Characterization of Elliptically Symmetric Distributions

A random vector X = [X1 , X 2, ... XN]T is said to have an elliptically contoured distribution

if the characteristic function of X can be expressed as

"DX(w) = exp(jwTP)%(VWTEW) (7.1)

where w and p is an N by 1 vector, EJ is an N by N positive definite matrix and %P is an

arbitrary function [37]. In many practical applications involving Monte Carlo experiments, a

more restricted class of elliptically contoured distributions are used becausc of their relative

simplicity. This class of distributions called elliptically symmetric distributions (ESD) and has

a PDF of the form
1

fx(x) = kIEJ-2hN(p) (7.2)

where k is a normalization constant chosen so that the volume under the curve of fx(x) is

unity, p = (x _ P)TE-l(x - A) is a non-negative quadratic form and hN(p) is a non-negative,

monotonically decreasing, real valued function. The random vector X having a PDF of the form

of eq (7.2) is also called a spherically invariant random vector (SIRV). The constant k is equal

to (27r)-2. In this Chapter we shall restrict our attention to SIRVs. A representation theorem

for SIRVs [28] states that if a random vector is an SIRV then there exists a non-negative random

variable S such that the PDF of the random vecter conditioned on S is a multivariate Gaussian

PDF. In mathematical terms, we consider the product given by X = ZS where X is an SIRV, S
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is a nore-negative random variable having PDF fs(s) and Z is a Gaussian random vector having

the same dimensions as X. Then, we can express hN(p) as

hN(P) =/1. aeXp(Pj)fs(as)d, (7.3)

where p is the previously defined quadratic form. The PDF of the random variable S (i.e. fs(a))

is called the characteristic PDF of the SIRV. We define a spherically invariant random process

as random process (real or complex) such that every random vector obtained by sampling this

process is a SIRV having the same characteristic PDF.

In the special case when E is the identity matrix, eq (7.2) represents the PDF of a spherically

symmetric random vector. This is due to the fact that the PDF in such a case is a function of

XTx. Elliptically symmetric distributions are related to spherically symmetric distributions in

an interesting way. If Y is a spherically symmetric random vector, then the random vector X

which has an ESD can then be obtained by the linear transformation [28]

X = AY + b (7.4)

where A is an N by N matrix such that

E =AAT (7.5)

and b is a known N x 1 vector. Thus, in many applications it is sufficient to deal with spherically

symmetric distributions and generalize the results to elliptically symmetric distributions.

Finally, the PDF of the quadratic form appearing in eq (7.2) is given by

Mp) = 2 "-1  hN(P)U(P) (7.6)

where r(a) is the Eulero-Gamma function and u(p) is the unit step function [34]. It has also

been pointed out in Chapter 3 that the PDF of the quadratic form remains unchangcd regardless

of whether the PDF of the random vector is spherically symmetric or elliptically symmetric. For

example, in the multivariate Gaussian case, the PDF of the quadratic form is the well known

Chi-square distribution with N degrees of freedom. Therefore, for a given N, the SIRV (or

spherically symmetric distribution) is uniquely characterized by the quadratic form. In order to
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identify the PDF of the underlying SIRV it is sufficient to identify the PDF of the quadratic

form. This attractive property of SIRVs enables us to study various distributional aspects of

the corresponding multivariate samples. When a radar uses coherent processing, the joint PDF

of the 2N quadrature components is of interest. The above rcesults are then applicable with N

replaced by 2N.

7.3 Assessing the Distributional Properties

In modeling real world data, the first step is to determine the most appropriate PDF that

approximates the data. In the univariate case, the fit and assessment of the goodness of fit

for various distributions has been studied extensively and several methods are available for this

purpose. However, limited success has been achieved for the multivariate situation. Although a

number of multivariate distributions have been developed, the multivariate Gaussian distribution

has been the focus of much of the techniques for multivariate analysis [55].

Assessment of the distributional assumptions for multivariate data is a non trivial problem.

Several techniques have been proposed to assess multivariate Gaussianity. In a recent paper

Ozturk and Romeu [521 a review of the methods for testing multivariate Gaussianity is given.

Many of these methods can be modified or generalized to develop goodness of fit methods for

elliptically symmetric distributions. If a random vector Y is an SlRV, then the corresponding

marginal distributions must be identical except for their location and scale parameters. Based

on this property, one can use the the standard univariate goodness of fit testing procedures to

assess the degree of similarity of the marginal distributions of the multivariate data. However,

such an approach does not provide a way to assess the joint distribution of the components of

the multivariate sample. Recall from S-ction 4.5 that SIRVs can be characterized in terms of the

quadratic form P. Equation (7.6) provides an important property for developing goodness of fit

test procedures for SIRVs. Specifically, if thc PDF of P can be identified, then the corresponding

PDF of the SIRV can also be identified. In fact, many tests for assessment of multivariate

Gaussianity are based on the use of this quadratic form [56]. By use of this technique, note

that the multivariate distribution identification problem is reduced to a corresponding univariate

distribution identification of the quadratic form. Any of the classical goodness of fit testing

procedures like the Kolmogorov-Smirnov and Chi-Square tests can be used to address the problem

of distribution identification of the quadratic form. However, the requirement of large sample

sizes for specifying the parameters of the distribution and low power of the test necessitate use
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of alternate procedures that are more efficient.

A general algorithm was developed in [50] to test for univariate and multivariate normality.

In this section we propose the use of this algorithm for performing the goodness of fit test for

SIRVs. The procedure is summarized here for completeness. Let X = [XI, X2... XNIT denote

a vector of observations. For each observation vector of size n, we compute the corresponding

quadratic form P. (i = 1, 2,... n). Our goal is to test whether the transformed sample belongs to

a certain distribution F(p; a, /3, y) where a, 8 are the location and scale parameters, respectively

and - is the shape parameter.

The standardized order statistics are denoted by Yi.,, i = 1, 2,... n and are obtained by ordering

the Yk; k = 1, 2,... n such that Yin, < Y2 :n < ... < Y,,:.

SY•:n = (8..m - 77) (7.7)
SP

where P and Sp are the sample mean and sample standard deviation, respectively of PPk, k =

1, 2,... n. The i'h standardized ordered quadratic form sample is represented by a point Qi =

(Ui, Vi) in a two dimensional plane where

u = (7.8)
,,_" Eý=l in{S 70(rnj:,n) } lyj.:,, (-8
n Zý=, sin{7ir4(my:,,)}lyi:n I

In the above equations r = 3.14159, t is the distribution function of the standard normal PDF

and mj:n is the expected value of the jth order statistic from the standard normal PDF.

For a given multivariate sample, the points Qi (i = 1, 2,... n) are plotted and joined to obtain

a linked vector chart. Similarly, using the expected values of the statistic Yj:n, (j = 1, 2...., n)

under the null hypothesis an expected linked vector chart can also be obtained. The proposed

test is based on comparing the sample and expected linked vectors. If the null hypothesis is true,

then we expect that the sample linked vectors will follow the expected linked vectors closely.

Finally, a formal goodness of fit test is performed using the terminal point of the expected

linked vectors (i.e Q, = (Un, Vn)). A confidence contour for the true point is obtained to provide a

test hypothesis. If the terminal point of the sample does not fall inside the 100(I-a)% confidence

ellipse, then the corresponding null hypothesis is rejected at the a level of significance. Note that

the Qn test provides an interesting graphical representation of the data. An exam'aple of such
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graphical representation is givrn in Fig 7.1 tor teuting A multivariate Gaussian distribution with

n = 50 and N = 4.

It should be noted that the Q, statistic is location and scale invariant. In other words it is

independent of the location and scale paramf.ters. However, it depends on the shape parameter

of the null distribution. Assessment of the distributional assumptions of distribIutions that have

shape parameters is conceptually different from the corresponding problem for distributions that

do not have shape parameters. in the former case, we test whether the sample comes from

a particular member of a family of distributions while in the latter case, we test for a single

distribution. One possibility for dealing with this problem is to specify the value of the shape

parameter and perform the test in the usual way. If the shape parameter cannot be specified,

then an adaptive approach which uses the sample estimate of the shape parameter must be

employed.

Advantages of using the Q, procedure are explained in [50]. Usually the classical goodness of

fit tests end up with either rejecting or accepting the null hypothesis. An attr'act've property of

the Q,, procedure is that it provides some information about the true distributions if the null

hypothesis is rejected. Using this property an algorithm for characterizing and identifying the

distributions can .e developed. The next section explains these ideas.

7.4 Distribution Identification of SIRVs

Following the same procedure described in Section 6.4, where the reference distribution was

Gaussian, an identification chart can be generated for each of quadratic form PDFs of the SIRVs

listed in Tables 7.1 and 7.2. Recall from Chapter 4 that the PDF of the quadratic form is

invariant to the choice of p and E. Hence, for simplicity, the trajectories for the PDFs of the

quadratic forms of the SIRVs listed in Tables 7.1 and 7.2 are obtained by generating the SIRVs

having zero mean and identity covariance matrix. Each point on a trajectory is obtained by

averaging the results of 2000 Monte Carlo trials of size 100. As before, PDFs which do not have

shape parameters are represented by a single point in the U-V plane while those which have

shape parameters generate a trajectory in the U-V plane by changing the shape parameter.

An example of the identification chart is given in Fig 7.2 for N = 4 and n = 50 where the

expected values of Qm = (f V,,) is plotted for various distributions. The Gaussian distribution

was used as the reference distribution for determining the angles of the linked vectors. The SIRVs

listed in Table 5.1 and Table 5.2 are included in the chart and labeled by number. It is noted
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Table 7.1: SIRV* obtained from the marginal envelope PDF

Chi H(-2) vA J.= Gkb p " ep(.- 8p)
Gh,= N- 1 t*'-'B;J-'kz

111B=6

Weibull ff_'7TlFNexp(Ap1)
A - aoN

_____ Ch b)+I 2 m___________

Gen. Rayleigh Erf D- p I Itq+1eVp(-Bpf)
A -0'0(~

Dk= k 1( I~m+N-'12N-12 . k "( + m•.1)DB = , f -rm

Rician .N-1 N I ) ( - A
_0'_,V__=3 k (-1)"( )h --

- Ih...2r(pA),0 A f_ý

Table 7.2: SIRVs obtained from the marginal characteristic function

Marginal PDF1 h2(P).
Gaussian exp(-.-)
Laplace bx'Y(bt'rp) ' - • I(b

Cauchy__~~ q'b2+P)N+ ½
b3N (b . "•K-distribution a 2N ( KN-.(bv)

Student-t V Fv++

that the multivariate Gaussian (1), Laplace (2) and Cauchy (3) distributions are represented by

single points on the chart while the multivariate K-distribution (8), Chi (9), Generalized Rayleigh

(10) Weibull (11) and Rician (12) are represented by trajectories. The Student-t distribution (4,

5, 6, 7) witih degrees of freedom 3, 5, 10 and 15, respectively, is Z.lso shown in the chart. The

trajectories for each distribution were obtained by joining 10 points resulting from the use of

the distributions with parameter values listed in Table 5.3. Each point in the chart is obtained

by simulating 2000 samples from the corresponding distributions. The methods developed by

Rangaswamy et al. [35, 57] were used to generate the multivariate samples.

The identification chart that provides an interesting display for identifying and characterizing
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Figure 7.1: Goodnem of Fit Test using the Q, Procedure. 90, 95 and 99% contours for
the Gaussian distribution. Broken Line = Null distribution Pattern
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Table 7.3: Shape Parameters of the SIRVs Used for the Identification Chart
[ K-Distribution 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.1, 1.5, 1.9
UChi 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.75, 0.95
"en. RayleighF . 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0
Weibu . . 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
Ri1ian 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9

the distributions. Also, relationships between the various distributions are clearly seen. For

example, as their parameters are varied, certain distributions approach the multivariate Gaussian

distribution. Also, for appropriately chosen parameters, the multivariate Weibull distribution

and the Generalized Rayleigh distribution coincide. For a given N-variate sample of size n,

the statistic Q,, based on the sample quadratic forms can be computed and plotted on the

identification chart. Then the nearest distribution to the sample point is identified as the best

candidate for the underlying true distribution of the data. An example of such an identification

is shown in Figure 7.2 where a well known data set (i.e. Iris Setosa [58]) is used to obtain a value

for Q,, and is denoted by the point S. The Iris Setosa data consists of four measurements taken

from 50 plants. It is seen from Figure 7.2 that the best candidate for approximating the data is

the multivariate Chi (9) distribution.

We point out that there are other methods which can be used for the distribution identification

problem. A commonly used technique is the Q - Q plot. To identify the underlying distribution

the sample quantiles are plotted against the expected quantiles of a reference distribution. Then

the resulting shape of the plotted curve is taken as a basis for identifying the corresponding

candidate for the true distributions. However, the identification is made on a subjective basis.

Even then the procedure is not very easy. Another well known approach for identifying the

distribution is to characterize them via their skewness (a 3 ) and kurtosis (a4) coefficients. In this

case, all the distributions are represented by points on the a 3- a 4 plane and the sample data

point is compared with the theoretical distributions in the same way as in the Q,, procedure.

However, estimates of a 3 and a4 are known to be highly sensitive to extreme observations and

therefore, large sample sizes are necessary to perform the identification for a given degree of

accuracy.

7.5 Parameter Estimation

It is well known that the maximum likelihood estimate of the covariance matrix of a Gaus-

sian random vector is the sample covariance matrix. Interestingly enough, it has been shown
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in [59]that the maximum likelihood estimate of the covariance matrix E is the same sample
covariance matrix used in the Gaussian case to within a multiplicative constant. Because Q.
is scale invariant, the identification procedure for SIRVs can proceed without knowledge of the

multiplicative constant.

From eq (7.6), it is clear that the expected value of the quadratic form can be expressed as

E(P) = p(N, -) (7.9)

where -f is the shape parameter of the distribution. For those SIRVs where p(.) can be evaluated

in closed form and is invertible, the sample mean of P, denoted by T can be used to estimate

the shape parameter according to

= {, N}. (7.10)

where PP = - P. For example, in case of the K-distribution, we have E(P) = 2VN where V
is the shape parameter of the K-distribution. Clearly, the shape parameter can be approximated

as P P P. Unfortunately, it is not always possible to obtain an invertible closed form expression
for •(.,.). The shape parameter estimation procedure suggested here is not suitable in such a

case. An alternate method for the parameter estimation problem is then needed.

In this Chapter we propose to use the Q,, statistic to obtain an approximate estimator for
the shape parameter. The underlying procedure is explained in [50] and is summarized here.
Let the points (U1, V1) and (U 2 , V2) denote expected points corresponding to parameters 71 and

72 respectively, of a given SIRV. If these points are the nearest points on the curve for the
identified distribution to the sample point Q,= (U,, V•), then by using a linear interpolation,

an approximate estimator of -y is given by

-ti + (•2 - tl)(Xo UI) (7.11)

(U2 - U1)

where

= {A(Vn-V,)+A
2U 1 +Un)x0= (Az+l) (7.12)

A= V2-V2)

The accuracy of the proposed estimator for -/ depends on the distance between the sample point
Q,, and the corresponding curve. If necessary, the approximation can be improved by using
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non-linear interpolation methods.

7.6 Conclusions

In this Chapter we have addressed the problem of distribution approximation of radar clutt•.r

under the assumption that the clutter can be characterized as a SIRP. First and foremost, we

have shown that the multivariate distribution identification problem for SIRPs chn be reduced

to an equivalent univariate distribution identification problem of a non-negative quadratic form,

resulting in considerable processing simplicity. A new algorithm which provides a graphical

representation for the goodness of fit test and the distribution identification has been used.

This algorithm, while conceptually simple, is extremely efficient while dealing with small sample

sizes. Therefore, it is suitable for use in a variety of practical applications. Finally, based on this

algorithm, a new approach has been proposed for estimating the shape parameter of SIRPs.
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Chapter 8

Weak Signal Detection - Literature

Review

8.1 Weak Signal Problem

In radar applications it is found that the received target signal is contaminated with clutter

and thermal noise. The received signal due to undesired reflections from land, sea, atmosphere

etc. is called clutter. The thermal noise, which is generated by the receiver hardware, is typically

modeled as a Gaussian random process. This kind of noise is always present. Depending upon

the situation, the clutter may or may not be modeled as a Gaussian random process. Also,

the power associated with the background clutter may be orders of magnitude larger than the

receiver thermal noise or the desired signal power.

In modern radars, temporal and spatial processing are used to separate the target from the

clutter. For example, the received signal from a target having a radial velocity with respect to

the radar will experience a Doppler shift. If the target spectrum appears in the tail of the clutter

spectrum, then conventional frequency domain techniques can be used to extract the target from

the clutter. Similarly, if the spatial spectrum of the target does not overlap that of the clutter,

performance will be limited by the background noise rather than the cluttec. In this research use

is also made of temporal and spatial processing. However, we are interested in the case where the

target temporal and spatial spectra cannot be separated from the clutter. By definition, this is

referred to as the weak signal detection problem. Given a Range-Doppler-Azimuth cell in which

a target is to be detected, it is assumed that the signal is larger than the background noise but

much smaller than the clutter. Hence, even after temporal and spatial processing, performance
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is limited by the clutter.

Therefore, it becomes very important to identify the clutter plus noise probability density

function. This density function is the Nth order joint density function of the received radar

samples r1 , r2 , ..., rN in the absence of a target signal. The received waveform can be modeled as

a random process. Since we will be sampling this process at N time instants, we need to have the

knowledge of the Ndh order joint probability density function (PDF) of the N random variables.

In this research effort the performance measures of radar receivers are analyzed, given the Nth

order PDF associated with the random process.

In the hypothesis testing problem, where we have to decide whether the target is presert or

absent, two kinds of errors can occur: 1) A false alarm which occurs when it is decided that the

target is present when it is not, 2) A miss which occurs when it is decided that the target is not

present when it is. In many radar problems the chosen criterion is to fix the false alarm at a

certain value and then to maximize the probability of detection. In statistical decision theory

the Likelihood Ratio Test (LRT) is optimum for these kinds of problems. The LRT evaluatcs the

likelihood ratio which is the ratio of the Nth order joint PDF under the alternative hypothesis

H1 (signal present case) to the N1h order joint PDF under the null hypothesis H0 (signal not

present case). This ratio is then compared to a certain threshold to make a decision. Under

the constraint of a fixed false alarm, the Neyrnan-Pearson receiver obtained on the basis of the

likelihood ratio test is the optimum receiver.

The components of the received vector r can be written mathematically is

H1 : ri = si+di (8.1)

Ho: ri = di i = 1,2...N (8.2)

where si, and di represent the desired signal return and the additive disturbance, respectively.

Also, let fR(rIHl), fR(rlHo), f(d_), denote the Nih order PDFs of R under H1 , R under H0

and the disturbance. In general, the disturbance may be composed of clutter plus noise. Since

it is not possible to separate the clutter and noise components of the disturbance when the

disturbance is measured, we focus on the disturbance itself. As the signal becomes very weak

(i.e. as the signal to clutter plus noise ratio (SCNR) approaches zero), the numerator and the
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denominator of the LRT tend to become identical. This is due to the fact that

fLI(rIHn) o f,.(.lHo) = fp(d). (8.3)

This will result in the likelihood ratio being approximately equal to unity independent of the

received signal. Thus, if To denotes the likelihood ratio,

PD j fT,(T.IH1)dt, -- PF jn .fT.(T.IHo)dta (8.4)

where PD and PF represent the detection and false alarm probabilities. Therefore, the LRT

performs poorly in the limit as the signal strength tends to zero.

Even though the problem of weak signal detection in radar applications is of great interest,

most of the literature by various researchers has been devoted to strong signals in a clutter

plus noise background. Optimal and/or very good sub-optimal schemes have been proposed to

achieve the desired level of performance. Only a relatively small fraction of the literature is

devoted to the design of practical schemes for the detection of weak signals. In this report we

present a general theory for developing practical detector structures for weak signal problems.

Also, analysis of performance is carried out for a specific case where the background clutter is

assumed to have a multivariate student-T distribution and the signal to clutter plus noise ratio

(SCNR) is very small. In such problems the concept cf the Locally Optimum Detector (LOD)

is used to come up with the decision rule which is also a ratio test. For a deterministic signal, a

statistic is obtained by taking the ratio of the derivative with respect to the signal strength of

the Nth order joint PDF under H1 to the Nth order joint PDF under Ho. The limit of this ratio

as the signal strength tends to zero is evaluated to obtain the test statistic for the decision rule.

In the random signal case the test statistic is a ratio, in the limit as the signal strength tends

to zero, of the second derivative with respect to the signal strength of the Nth order joint PDF

under H1 to the Nth order joint PDF under H0 . This approach is valid when it is known that

the SCNR ratio is very small but the actual value of SCNR is unknown. Thus, the LOD turns

out to be a Uniformly Most Powerful (UMP) test for the class of problems where the SCNR is

in the neighborhood of zero. The theory of LODs is explained in detail in the next chapter.
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8.1.1 Literature Review

The concept of the locally optimum detector was first established by Neyman and Pearson in

their paper 'Contributions to the Theory of Statistical Hypothesis Testing' [60, 611. Subsequently

this was applied to statistical communication and signal processing by several researchers.

David Middleton's work [62] on the LOD is based on expanding the LRT in terms of a power

series expansion and truncating the series to a first order approximation. In the limit as the

signal tends to zero, the canonical structure of the locally optimum detector is established with

very weak restrictions on the statistical properties of signal and noise. The analysis applies

equally well to non-Gaussian as well as Gaussian, non-stationary as well as stationary processes,

"for stochastic as well as deterministic signals, continuous as well as discrete time signals and

for combinations of signal and noise that need not be additive. In fact, the general character

of the results is independent of the particular nature of the signal and iioise, although specific

noise distributions determine the specific detector structures. Middleton shows that the locally

optimum detector is a threshold detector with very strong optimality features in the limit of an

infinitely large number of samples. However, in our research, we are interested in applications

where the number of samples may not be too large.

For a variety of detection problems, Jack Capon [63] concludes that implementation of the LOD

is either less, or no more complicated than the Neyman-Pearson detector. Other researchers

in this area such as John Thomas [64], Saleem Kassam [48], Contc and Longo [65], Shishkov

and Penev [66] have all obtained performance of the LOD under the asymptotic condition of

an infinitely large number of samples. These researchers have modeled the noise samples as

independent, identically distributed random variables. This enables them to have a closed form

expression for the Nth order PDF of multivariate non-Gaussian noise. Applying the LOD test,

they have arrived at the decision statistic. Using the central limit theorem, the test statikti,.

is shown to approach Gaussian in the limit of very large sample size. Then the performance

measures are evaluated. Shishkov and Penev [66] have considered correlated interference. but

have r'mstricted themselves to multivariate Gaussian interference. Modestino and Ningo [47]

were amongst the earliest researchers to consider weak signal detection arising from bandpass

processes. They have modeled the received signal as statistically independent complex samples

and then obtained the joint density function of the inphase and quadrature components. Under

the assumption that the clutter density function is circularly symmetric, they transform the joint
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density function to an equivalent one involving the envelope and phase. Martinez, Swaszek and

Thomas[54], ha,,e considered the case where the noise has a multivariate Laplace distribution,

where any non-negative definite matrix can be used to model the correlation between the random

variables. However, they do not analyze the receiver performance for small sample sizes which

is the case of practical interest.

8.2 Non-Gaussian Correlated Data

Previously, general analytic expressions for the various applicable Nr"h order joint non-Gaussian

PDFs which allow for correlation between the variables were unavailable. As a result, researchers

in the past assumed independence between the samples. By assuming independence between the

samples, they were able to get the Nh order PDF as a product of the marginals. If we carry

out the locally optimum test using the Nt" order density function based upon independence and

evaluate its performance, it is found that an unreasonably large number of samples is needed

for acceptable performance. This arise, because independent samples imply a white spectrum.

Consequently, space-time processing cannot be used to filter the target from the clutter. Based on

the concept of Spherically Invariant Random Processes (SIRP), analytical expressions for some

Nt1h order joint Non-Gaussian PDFs which allow for correlation between the variables are now

available. The SIRP was explained in great detail in Chapters 3-7. Since theoretical evaluation

of receiver performance is very difficult for non-Gaussian PDFs, it is done through computer

simulation. The computer simuladion procedure for receiver performance evaluation is explained

in chapter 11. This performance is compared with that of the Gaussian receiver to see the gain

obtained due to the added complexity of the locally optimum detector.
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Chapter 9

The Locally Optimum Detector

The usual criterion in radar problems is to maximize the probability of dete~ion under a fixed

false alarm probability constraint. This receiver is called the Neyman-Pearson receiver. The

receiver implements the Likelihood Ratio Test (LRT) and compares it against a threshold whose

value is designed to give the desired false alarm probability. In particular, consider the received

vector jjT = [RI, R2, ... , RN]. Introduce the two hypotheses Ho and HI as described below:

Ho: ri = ci+ni (9.1)

II: ri = Os,+ci+n i =1,2...N. (9.2)

Thus, Ho pertains to the hypothesis that the received signal consists solely of clutter plus noise

while target signal is assumed to be present under the hypothesis H1. Let the joint pr bability

density function of R1, R2, ... , RN under hypothesis Hk (k = 0,1) be denoted by f(rIHk). The

Neyman-Pearson receiver performs the LRT

fa(riHo) MYT()=fR(rIlH•) >or/ (9.3)

where 9 is specified to satisfy the false alarm constraint

PF = fT1 (t. IHo)dt. (9.4)

and fT,(teIHk) is the conditional probability density function of the test statistic 2'. given hy-

pothesis Hk.

However, when the signai strength is very small relative to the clutter plus noise, the joint
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density function of the received random variables under H/ approadces that under H0. Then the

numerator and the denominator of the LRT become approximately equal leading to numerical

difficulties in discriminating between the two hypotheses. The Neymal-Pearson test is of course

optimum. However, the' form of the LRT can be rearranged to yield a test statistic which is

more sensitive to perturbations in the received data. This gives rise to the concept of the Locally

Optimum Detector (LOD). In this chapter the concept of the LOD is developed in detail using two

approaches. The first approach is based on a power series expansion of the LRT and the second

approach derives the LOD by an optimization using the principle of Lagrangian multipliers. it

is shown that both approaches yield identical detector structures, though starting from different

theoretical points of view. As the signal strength becomes weaker, the LOD becomes optimum

even though its performance may not be as good as desired for a fixed sample size.

9.1 The Series Approach
9.1.1 The Known Sigual Case

Let the additive clutter component C = [Cl, C2, ... , CN]T be stationary and independent of

the stationary white Gaussian background noise LV. = [NI, N2,,..,NNJT. The noise variance a,

is assurned to be several orders of magnitude below the clutter variance Cr2 which is taken to be

unity without loss of generality. The signal is assumed to be of the form OS, where _ is known.

The components of 5 are chosen to have ISuij = I so that the positive parameter 0 is a measure

of the signal to clutter ratio (SCR) defined by

SCR = (CI= 02. (9.5)

Because the clutter and noise are statistically independent with the noise assumed to have zero

mean, the covariance matrix of the disturbance vector P_ = C + N, denoted by MD, is equal

to the covariance matrix of the clutter MC plus the covariance matrix of the noise MNV. Since

the noise is white and stationary, the covariance matrix of the noise is of the form MN -= aI,

where I is the identity matrix. When the clutter is highly correlated, the covariance matrix M,

tends to be ill-conditioned. However, MD will not be ill-conditioned because, by adding the small

value ar! to the diagonal elements of MC, the smallest eigenvaiue of MD is guaranteed to be no

smaller than or2. Also, addition of Myv to MC ensures that the disturbance spectrum will limit

performance even in those frequency intervals where the clutter spemtrum is negligible.
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With this approximation the LRT takes the form

To = f>tIll) 77r.) i. (9.6)fa(EiI-10) = f&(r:) -N o

As mentioned previously, when 0 < 1, the signal 0,5 represents a small perturbation in the

received vector under hypothesis HI. Hence, fa(I:IHI) approximately equals fp(r Ho). As a

result, T, is relatively insensitive to 05-. One approach at deriving a weak signal detector is to

expand the numerator of the LRT in a Taylor series.

For this purpose, let y = r - 09. Then

fR(I:IHl) = .fD(y). (9.7)

Expanding f(y_) in a Taylor series about the received vector _, we obtain

fD~)= ~.r) N( -r,)f(

fNN ) 0!fDQ2 _)

1 N N N , OnfD(•)+ i .. X (yb, - rk,)(Y/A r 3 ).(lk - rk2) 0  0 I~

k=I k32=I kn,=i
= k(9.8)

This can be expressed in vector form by introducing the operator

N 0 (9.9)

where the subscript y on V indicates partial differentiation with respect to the components of y.

The expansion of fD(y) about the point y = r then becomes

f_(y) = fQ(ir) + [(y - _)rV]jfp(y)jV=r

+ [(y - r)T V•] 2fo_(M)Ir=:

+ -4[(y - t_)rViinfD(Y)ly=,.
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001

- f/.(t_) + • W[• - r)T •] fD(•)I=. (9.10)

Recall that 0§ = - , where 0 and • are constants. Note that y - = -0§ and 3L = -•. Then

N
( r)TV = E(-08h)- = -oTV, (9.11

k=1 rk

where the subscript r on V indicates partial differentiation with respect to tle components of r.

It follows that the expansion may be written as

f_(r - 04) = fD(_) + X ( 1  [fIrVrI fD(_). (9.12)
Vk-=1

In order for the above expansion to be meaningful, it is necessary that all the derivatives in the

above expansion exist.

Thus, using the above expansion of f&(r - 0), the Taylor series expansion of the likelihood

ratio about the received vector r in equation 9.6 can be written as

T"(r.) = 1 + [I, f (TVS)"]f(r). (9.13)

The first term, being a constant, can be combined with the threshold without loss of optimality.

The LOD is defined to be the term corresponding to n = 1 of the infinite summation. For

0 < 1, it is assumed that the remaining terms in the summation are negligible. On the other

hand, because r is random and the partial derivatives of the PDF may be large, the remaining

terms may not be negligible. However, it is assumed that this occurs with small probability. The

resulting detector structure can be expressed as

TLOD(r) (STVr)f() > (9.14)
f.L(r) M<O

where -9 is chosen so as to achieve the desired false alarm probability.
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9.1.2 The Random Signal Case

When the signal is random, f!j(rJH1) is obtained by integrating the joint density function

fais(r, .jH1 ) over all possible values of 1. Hence,

fA(rIH1) L fs(r,I.H)d9 =.-& fa0s.0(zl HI)fs(I)ds = E.[fHIl§rz -1g, I)] (9.15)

where E, denotes the expectation operation carried out with respect to the random vector S

Because the denominator of T, in equation (9.6) is independent of S, the Taylor series expansion

of the likelihood ratio can now be written as
00, (- 1)n"0 [(S

T0(r) = 1 + [E T, [f -nVr)f](r.)]. (9.16)
n=1

Once again, as in the known signal case, the unity term appearing in the test statistic can be put

into the threshold. If we make the assumption that the expected value of the signal vector is a,

then the n = 1 term in the infinite series of equation ( 9.16) goes to zero. Thus, for the random

signal case, where the signal vector has zero mean the LOD is defined to be the second term

(n = 2) in the infinite series. As in the deterministic signal case, 0 is assumed to be small enough

such that the remaining terms of the series are negligible with high probability. Consequently,

the LOD for the random signal case is given by

f92'• HI 12= E.[(8TV)2 ]fD-(t)]> H (9.17)
2fD(r:) Hwo

where To2 represents the second order term in the Taylor series expansion of T,. The above

equation can be rewritten as

92 E.V THI I
ET[V2 ><V~D~) (9.18')T.2(r) = 2 fD_(r_) EHvs-T]f--•]o >r"(.8

where, as before, ii" is chosen to achieve the specified false alarm probability. Lumping the

constant T. with the threshold and recognizing that

Eo[(.TV,) 2] = E4[VTs_ _TV,] = VTPVT, (9.19)
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where P is the covariance matrix of the signal vector, then the detector structure for the locally

optimal test becomes

TLOD(!_) "" f.(r) <,1. (9.20)

9.2 The Lagrangian approach

Consider again the hypotheses testing problem defined in equation ( 9.2). Let us define a

nonrandomized decision rule 0(r.) such that

1; H1 true (target present) (9.21)

0; Ho true (target absent).

This amounts to partioning the decision space into two regions, S, and So. A target is declared

if the vector r is present in the space Si. If it falls in the space S0, then the decision is made that

the target is absent. The probability of detection equals the probability that the nonrandomized

decision rule equals unity, given that hypothesis H1 is indeed true. This probability will, in

general, be a function of 0, the signal to clutter ratio. Denoting /3(0) as the probability of

detection we have

PD =/3(0) = p[O(r) = IIHIJ = f 0 (r)fR_(r_.H,)dr. (9.22)

/3(0) is defined to be the power function of the test. The false alarm probability is given by

Pp = p[=(r) ljH] = J 0(ijf(rIHo)dr = a. (9.23)

The optimization problem to be discussed in the next section imposes the constraint that the

false alarm probability be equal to a. a is also defined to be the significance level of the test.
9.2.1 The Known Signal Case

As discussed earlier, in the limit as the signal strength tends to zero, the probability of detection

becomes approximately equal to the probability of false alarm. Therefore, instead of maximizing

the probability of detection, one approach is to maximize the slope of the power function (/3(0))

curve at the point 0 equal to zero. The function to be maximized and the constraint are given
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in the following two equations. Maximize

-OO) ,0(r,)f=(rI=1)d[.±]o (9.24)

subject to the constraint

I' ()fa(rI/1o)dr = a. (9.25)
00

We also require that the test be uniformly most powerful (UMP) in the sense that O(r) be

independent of 0 for small neighoorhoods in the vicinity of 0 = 0. Notice that there is a

derivative with respect to 0 outside the integral in equation ( 9.24). If the function fR(rIHi) is

a well behaved function such that its derivative exists at a!l points, th.- derivative can be moved

inside the integral resulting in

Ff (!:)fR(rtH')dr = 'O() fR(rJH.l)dr -I- / (r) -f-=IH1) dr. (9.26)
00 . 9 o 9

Because of the UMP requirement, L = 0 and the first integral in equation (9.26) integrates

to zero. It follows that

0- TI (r)fR_(lH1)dr = f0O(r,) 0a(r'HI)dr. (9.27)FO - 00 00 -

Given the function °Io0°9=o to be maximized along with the false alarm prob•,bility constraint,

the functional torm of the maximization problem using the Lagrange multiplier approach is

-/ • (r_) 9 fn (rlH • "-- N r o~ 0
pax Or ) - dr~-o+ s[a -J _ (r)fR(flHo)4&]] (9.28)

where q is the Lagrange multiplier. Expression (9.28) can be rewritten as

max [ 0 - (r)[ f- -)fR(rIHo)I.rIJe=o + 77a. (9.29)

To maximize the above integral, the decision regions should be chosen such that the integrand

is always positive. In other words, the decision regions are chosen such that

O fR_(r2I0=_o < 77fA(_.Ho). (9.30)
10 HO
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As was pointed out in the previous section, f.(r:IHI) is identical to fp(r - Op). Therefore, the

decision rule becomes
OfL,(r - 03) (.1O 10=0 < Ofp-(r:). (9.31)

090 IRO
The locally optimum detector is defined to be that detector which implements the ratio test

Oft, (r-ob)

f <.. a0 0 = 1r. (9 .3 2 )
S(r) HO

The Lagrange multiplier i? is chosen to satisfy the false alarm constraint. Note that

f 0(r.-O ) =f(rl - 0s.1 ,r 2 - 0 $2,...,rN - OSN). (9.33)

As a result,

Of_(r - 0-) c&Of(r - 0-s) 0(r - -Osl) OfD(r - -Os) (r2 - Os2)

o90 = (ri - Osi) o + O(r2 -2) 00
+ + OfD(r -- O) O(rN -- OsN)

-" (rN - 0 3N) 90

Of D(rk - O sk)
k=1

Consequently,
OfP(r - OS) N 0fD(r)

0 1== - k (sTV)f(r) (9.35)
k=1l r

Thus, the locally optimum detector can also be written as

TLOD() (V)f() =. (9.36)
fD(r) H<"

It can be seen that this detector is identical to the one in equation (9.14) obtained through the

series approach.
9.2.2 The Random Signal Case

Consider a random s:gnal S$ and let its joint PDF be denoted by fs(s). Also, without loss

of generality, we can make the assumption that the signal vector has zero mean and that each

component of the vector has unit variance. Given the signal vector S. the joint density function
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on the received vector under hypothesis H1 is

fhi(rl., HO) = fpQ.(r - 04.). (9.37)

The power function for the locally optimum test was given in the previous section in equation

(9.22). However, in the random signal case the unconditional density function fR(r.nH 1 ) is ob-

tained by integrating out the random vector 5 from the joint PDF ffi,.(", _IH 1) = fa(r.lis, H1 )fs(&).

Use of equation (9.37) results in

P3(0) = j j 0(r)fi:(r -- 0•)fs(1)d& da. (9.38)

The false alarm constraint is once again given by

I/0o 0(r--)f(r-Ho)dr_ a. (9.39)

As before, we wish to maximize 1 10=9. If the function fp_(r - 09) is a well behaved function

such that its derivative exists at all points, then

0/30 ) = f jo oj 0o !:) f D ' fsG -dds. (9.40)

It follows from equations (9.35) and (9.36) that

ONO_ oo0 a N OfD(r)
I'=° O(rw.[1: ark - k-]s(I)I- A-12' (9.41)

o90 00 k=1

Because of the zero mean assumption

L_' Skfs(.)ds = 0. (9.42)

We conclude that
0/(0)=o" = 0 (9.43)

00

independent of the choice of O(r). Therefore, to maximize the ability of the power function to

increase in the vicinity of the origin, we maximize • 19=0 = 0. As before, assuming that the
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role of integration and differentiation can be interchanged,

02#(0) _ o o 02(9(r4-4
002 t9 )02 fl(.)dr ". (9.44)

However from equation (9.34)

(2 fD(r o_) o N OfD(_ - o.)

802 = FOE - ok) (-08k)
N N 02fp(r.-_O) 0(rjOS()

j=1 k=, L(r, - osj)O(rk - Osk) -00

N N 02fQ-(r_ - OA)

EE Sj~k-(9.45)
j=1 k=1 (rj - Os, -8k)

Hence,
&&f(r - O~g) N N0fr

02 1=o0 = E sjSk = (VyS STV,)fR(r). (9.46)
j=l k=1 j

Then the second derivative of the power function at the origin takes the form

02(0) e=o -- 0 (r.)(V T aJVr)fD(.)fs(_)d0 di = q)(r)E.(Vyi ,T V7 )f_(r) dr.

(9.47)

Using the approach of Lagrange multipliers to maximize the function in equation (9.47) along

with the constraint ( 9.39), the optimization problem can be written as

max[Jo 4(r)(V i P~tf~)L + f~ - 0q(L)fp(z:)4jri. (9.48)

The above expression can be rewritten as

max[j (r__)[E,(Vr sar )fQ(r) - ?f_(_r)]dr + t/l. (9.49)

To maximize the integral the decision regions have to b 5 chosen such that the integrand is always

nonnegative. The resulting decision regions yield the inequalities

E.(VTo 1TV,)fp(r) o vlfD(r)" (9.50)
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If the covariance matrix of the signal vector is denoted by P, then the locally optimum detector

can be written as
TLOD(r.) = (VTPV')D-r--")f "• (9.51)

fDODr_) <o

As a general rule for deriving locally optimum tests, note that we maximize at the origin the first

non-vanishing derivative of the power function. For the known and the purely random signal

cases the first non-vanishing derivative is the first and the second derivative, respectively.

9.3 Special Cases

In this section LOD structures will be derived for two special cases. In the first it is assumed

that the N random variables in the disturbance vector D are statistically independent. With this

assumption, the joint PDF of the N random variables is obtained as a producit of the marginal

density functions of the individual random variable. In the second the N random variables are

modeled as arising from an SIRP. This model enables us to write the joint PDF of the random

variables analytically, accounting for the correlation between the random variables. The locally

optimum detector structures are derived for both cases. It turns out in both cases that the

detector can be expressed in a canonical form. This canonical expression is derived for both the

known and the random signal cases.
9.3.1 The Known Signal Case
9.3.1.1 Independent Random Variables

From equation ( 9.32), the LOD structure in the known signal case is given as

80 1o > (9.52)
fa(r_) < -o

Let the N random variables in the vector P be independent such that the PDF of the ith random

variable is fD,(di). Therefore, the conditional joint density functions of the N received random

variables are given by

N

fRlR A... RN(rl,r2,...,rN1Ho) = lfm,(r,) (9.53)

N

fRl,R 2 ,....RN(rl,r2,...,rNIHl) = IlfD,(r, - Os). (9.54)
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The numerator in the ratio test of equation ( 9.52) is evaluated as

OfD~-4 N N Nf

00 19o=0- [1f f(ri - 0si))o = { (-.9i) dIr fDiif(rJ)} J 9 i. (9.551)___ _ =1 j=1

Thus, from equation (9.52) the LOD statistic for independent random variables is given by

TLOD(rl,r2,...,rN) = -- , (9.56)
i=1 fjj,(r,)

where fý,(r) denotes the derivative of f,,(r,) with respect to ri. The above equation for the

LOD statistic is the canonical form obtained when the random variables are independent. For
different density functions, fm (r,), the detector will be different, although its structure remains

the same. The canonical form of the detector is shown in Fig. 9.1.
9.3.1.2 Random Variables Arising from an SIRP Distribution

When the random variables of the disturbance are drawn from an SIRP distribution, the joint

PDF can be written as 1
fg(d) = 2 NIM,2hN(P) (9.57)

where p = dTM- d, M is the covariance matrix for the N random variables and hN(p) is a

positive valued, nonlinear function of p. The numerator of the ratio test in equation ( 9.52) is

given by

• c- fk_(r_- 03_) a 1 1 900 10=0 = FO f{2 ?rN/ 21MI,/ 2 hN(P)}IO=o = 2 1N/21MI,/2 80-fhN(P)}J0=o. (9.58)

In terms of 0 and d = r - Os, the quadratic form p equals (r1- Os)TM-l(r - 0_). From the chain

rule for differentiation we have

49(hN(p)) = (hN (p)) 0 (9.59)

From the expression for p

5-Ie=o = -2(Mlr). (9.60)

Making use of equations (9.58-9.60) the LOD statistic in equation (9.52) becomes

TLoD(r) = -2(sTM-Ir)hN(P (9.61)
3hN(p)
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Figure 9.1: Canonical form of LOD assuming known signal and independent r_1dom

variables.
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where h'(p) denotes the derivative of the function hN(p) with respect to the argument p. The

LOD statistic in equation (9.61) represents the canonical structure when the disturbalice is

modeled as an SIRP. The nonlinear function hN(q) depends on the particular joint density

function used to model the disturbance. The canonical structure for the detector is 9hown in

Fig. 9.2.
9.3.2 The Random Signal Case
0.3.2.1 Independent Random Variables

The locally optimum detector is given by equation (9.51) when the signal is random. Rewriting

equation ( 9.51) the LOD structure is
(VTpv7,)fP.(r)u

TLOD(r) = <fp( t) 77. (9.62)
fp-(r-) Ho

P is the random signal covariance matrix. For convenience, the signal random variables are

assumed to be independent in which case the covariance matrix P is diagonal. Let the diagonal

elements of the matrix P be represented by a?, i = 1,2, ... , N. Because the disturbance random

variables are also assumed to be independent, the joint density function fD(_r) is again given by

the product of the marginal density functions of the individual random variables. Specifically,

N

fD(r) = flfD,(r,) (9.63)
i=1

Also, when P is diagonal,
vqT N a? 2

p = Pv Far? (9.64)- ~~i=1 'O•

Using equations (9.62-9.64) and following the same steps as in the known signal case, the LOD

statistic can be derived as
N

TLoD(r.) = ("- ) (9.65)

where the double prime indicates second derivative with respect to the argument. The canonical

structure derived above is shown in Fig. 9.3.
9.3.2.2 Random Variables Arising from an SIRP Distribution

When the disturbance vector is modeled as having an SIRP distribution, the joint PDF and

the LOD structure are given by equations (9.57) and (9.62), respectively. Since the constant

terms in the joint density function cancel out in the numerator and denominator of the ratio test
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Figure 9.2: Canonical form of LOD assuming known signal and random variables arising

from an SIRP.
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Figure 9.3: Canonical form of LOD assuming random signal and independent random

Variables.
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in equation (9.62), the LOD statistic is obtained by evaluating

TLOD( (V PV )hN(p) (9.66)i • T•O ( •) - hN (p)

The locally optimum detector statistic that results from the above equation can be written
as

2hN(p)SM 4h(p) N )2 (9.6)-- _TLD(_r)= hN (p) + hlv(p) =

where SM represents the sum of all the elements of the matrix M- 1 and AL-' represents the
V'i column of M-1. The canonical structure of the detector is shown in Fig. 9.4.
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Figure 9.4: Canonical form of LOD assuming random signal and random disturbance
arising from an SIRP.
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Chapter 10

Determining Thresholds for the

Locally Optimum Detector

10.1 Introduction

The hypothesis testing problem for deciding whether or not a target is present is given by

equations (9.1-9.2) in Chapter 9. For weak signal applications, it was shown that the Locally

Optimum Detector is useful in coming up with a decision rule. For the known signal case,

the LOD structure is given by equation (9.32). Since the test statistic is a nonlinear function

when fD(trHo) and fD(rHl) are multivariate non-Gaussian density functions, it is not possible,

in general, to analytically evaluate in closed form the threshold r7 for a specified false alarm

probability. Given the probability density functions (PDF) of the test statistic denoted by T,

under hypotheses H1 and H0, the detection and false alarm probabilities are

00i

PD =1 fT(tlHl)dt (10.1)

PF = 0 fT(tIHo)dt. (10.2)

PD and PF are represented by the shaded areas shown in Fig. 10.1. As indicated in the figure

PF is typically much smaller than PD.

In practice, the density function of T is not known in advance. For example, depending

upon various conditions such as terrain, weather etc., the clutter may be from Gaussian, K-

distributed, Weibull or some other probability distribution. It has recently been shown [50] that

approximations for the PDFs on T can be determined experimentally using a relatively small
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number of samples (-g: 50-100 samples give good fits depending on the distribution). Because

the number of samples required by Ozturk's technique is small, it is unlikely that actual data

samples will be from the extreme tails of the PDFs. Consequently, the good fit mentioned above

applies to the main body of the density function.

In order to establish the threshold for a specified PF, it is necessary to accurately know

the behavior of the tail of fT(tIHo). The threshold can be determined through Monte Carlo

techniques. Unfortunately, the number of trials M required is given by the rule of thumb

10
M > P-0 (10.3)

PF

Hence, if PF = 10', at least one million trials should be generated. Clearly, this is not a very

desirable situation. In this Chapter a new approach is developed for experimentally determining

the extreme tail of fT(tIHo), where the number of samples required is several orders of magnitude

smaller than that suggested by equation (10.3). Once the tail of fT(tIHo) has been estimated,

the threshold can be determined by use of equation (10.2).

10.2 Methods for Estimating Thresholds
10.2.1 Estimates Based on Raw Data

In this section we consider some commonly used threshold estimates, These estimates are

called raw estimates and are already included in some statistical package programs (eg: the

UNIVARIATE procedure in the SAS package).

Let X, < X 2 < ... < X,, denote the sample order statistics from a distribution function F(x).

Let p denote the desired false alarm probability. Also, let n(1-p) = j + g where j is the integer

part of n(l-p). We denote the threshold estimate based on the kV' procedure to be described

below by i/(k). Four different threshold estimates are given as follows:

7p) = (1 - g)xj + gXj+i (10.4)

77p = Xk, where k is the integer part of [n(1 - p) + 1/2] (10.5)

?7(3) = (1-6)Xj+6Xj+i,6=Oifg=0; b=lifg>0 (10.6)

,(4) = IX + -(1 -6)(Xj +Xj+1 )/2, 6= 0 if g = 0; 6 = 1 if g >0. (10.7)

It is known that all of the above methods are asymptotically equivalent. Thus, if a large

sample size is used (where for example M is determined from equation (10.3)), the choice of the
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best method is no longer critical. However, in an empirical study [67], it has been shown that

(4) outperformed the other estimators when g = 0. It is noted that the methods based on the

above estimators are restricted by the condition that 1 5 n(1 - p) •5 n - 1. This implies that

the smallest value of the false alarm probability p cannot be lower than I/n. Consequently, the

threshold corresponding to the smallest false alarm probability which can be estimated by these

procedures depends on the sample size. Thus, for a reasonable size of n, estimation of thresholds

for small false alarm probabilities cannot be made when these methods are used.
10.2.2 Estimates Motivated by the Extreme Value Theory

Extreme value distributions are obtained as limiting distributions of largest (or smallest) values

of sample order statistics. Assuming independent trials, if X2 4 . X2 < ... _< X,, are order

statistics from a common distribution function F(x), then the cumulative distribution function

of the largest order statistic is given by

a,(x) = P(X, _< x) = [F(x)]". (10.8)

It is clear, as n --+ oo, that the limiting value of Gn(x) approaches zero if F(.r) is less than 1 and

unity if F(x) is equal to 1 for a specified value of x. A standardized limiting distribution of Xn

may be obtained by introducing the linear transformation, anXn + bh, where an and bn are finite

constants depending on the sample size n.

In Appendix C, using the theory of limiting distributions [681, it is shown that if there exist

sequences an and bn such that

Jim p(Xn - b < x) = lim Fn(anx + bn) = Gn(anx + b,) -. A(x) (10.9)
n.-,oo an n-

then the solution of the above functional equation yields all the possible limiting forms for the

distribution function G,(x). The solutions to the above equation are derived in Appendix C and

are rewritten here:

A(x) = exp(-e-') x > 0 (10.10)

A(x) = exp(-x-k) x > 0, k > 0 (10.11)

A(x) = exp(-(-x)k) x ! 0, k > 0. (10.12)

In the limit, as n gets large, these are the three types of distribution functions to which the largest
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order statistic drawn from almost any smooth and continuous distribution function converge.

Therefore, for large x, the tails of almost all smooth and continuous probability density functions

for the largest order statistic also converge to three limiting forms. From equations (10.10) and

(10.11), respectively, the two limiting forms that pertain to the right tail (the case of interest for

the locally optimum detector test statistic) are [68)

1 -- - H(x) = e` (10.13)
dx

dA (x)_
2. d""• ; H(x) = kx-(k+') k > 0 (10.14)

dx

where H(x) approximates the probability density function for large x. The first equation above

is the well known exponential distribution and the second equation is related to the Pareto

distribution. The details that lead to the limiting distributions of the tails are shown in Appendix

C.
It remains to be explained how the distribution of the largest order statistic is related to the

tails of the underlying PDF from which the samples are drawn. The relationship is based on

the observation that inferences from short sequences are likely to be unreliable. In particular,

instead of observing k sets of n samples and taking the largest order statistic from each of the

k sets, it is better to observe a single set of nk samples and use the largest k samples from this

set [69]. The k largest order statistics from a vector of nk observations constitute the tail of the

underlying distribution especially when n is very large. Therefore, the limiting distribution of

the largest order statistic closely approximates the tail of the underlying PDF for large n.

10.3 The Generalized Pareto Distribution

The Generalized Pareto Distribution (GPD) is defined for x > 0 by the distribution function

G(x) = 1 - (1 + -x/ua)- 1", -oo <y7 < oo, a > 0, yx > -o. (10.15)

This distribution has a simple closed form and includes a range of distributions depending upon

the choice of -f and o,. For example, the exponential distribution results for y = 0 and the

uniform distribution is obtained when -y = -1. The GPD defined in equation (10.15) is valid

for all x > 0 while equations (10.13) and (10.14) are valid only for large x.
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The probability density function corresponding to the GPD is given by

/),__ X (10.16)
-d ( + +.)1~ .1(g(X) + - -- /Y = ý(

If we let - -- 0 in the above equation, note that

li 1 "+X)_..1  1 = --- V--01i (1 a ;• = e . (10.17)

Also, if we let x be large in equation (10.16), note that

(1+ P-)' , ) (10.18)

Equations (10.17) and (10.18) are of the same form as equations (10.13) and (10.14). Thus,

the GPD can be used to approximate both types of tail behavior exhibited by the right tail.

Typical plots of the Generalized Pareto PDF are shown for 7 < 0 and y > 0 in figures 10.2 &

10.3.

We wish to set thresholds for specified false alarm probabilities when the underlying density

functions are unknown. To set very small false alarm probabilities, the tail of the PDF pL(IlHo)

has to be accurately modeled. Figure 10.4 represents a typical PDF of the test statistic with the

tail region of the PDF being defined as that to the right of t = to. Figure 10.5 shows the tail

translated to the origin. The choice for to is somewhat arbitrary. For example, to can be chosen

such that the area in the shaded region equals 0.1, 0.05 or 0.01. It is the portion of the PDF to

the right of to that we are interested in modeling by the GPD. In particular, the tail region of

the PDF is translated to the origin and modeled as a GPD. Once the estimates of o and -' have

been obtained, the GPD is scaled by the area of the shaded region and translated back to the

point to. In this way, the area under the PDF of the test statistic is maintained at unity.
10.3.1 Methods for Estimating the Parameters of the GPD

Suppose that the sample ordered statistics X1 : X2 <_ ... _< X' are drawn from the distribution

function F(x). To estimate the right tail of this distribution it is necessary to determine a value

(say xo) and then use those sample observations which are greater than xo to obtain the quantity

z = X - xO. Once the tail observations have been chosen, the Generalized Pareto Distribution

can be fitted to these observations by using standard methods of parameter estimation. Observe

that the portion of the observations used from a complete set of samples depends on the choice
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of xo. One approach to selecting x0 is to make a histogram of the data set and choose x0 to

be nerx the point of inflection of the histogram. DuMouchel [70] proposed choosing Xn to be

the value such that f.. fx(x)dx = 0.1. Such an approach is less subjective and appears to be

satisfactory for many applications. However, it is noted by DuMouchel that " using an even

smaller fraction of observations would restrict profitable use of the statistic to much larger sizes.

On the other hand, to use more than the upper one tenth of a sample would seem to allow too

much dependence on the central part of the distribution." In other words, if a smaller fraction is

used, we need larger sample sizes to get an adequate number of samples for estimation and if a

larger fraction is used, the body of the distribution may influence estimation of the tail.

Let XO he chosen as the value such that 1 - F(xo) =f fx(x)dx = a. The distribution

function to be used in approximating the tail can be written as

.f(x) =(1-a) + aG(x - xo)= 1 - a(1 + -(x-xo)] 1-' x > xo (10.19)

where G(x) is given in equation (10.15). Assuming that the tail of a given distribution can be

approximated by equation (10.19), then the estimation problem of the distribution in the tail

region is reduced to estimation of the parameters of the Generalized Pareto distribution.

In this chapter we consider three methods for the parameter estimation of the Generalized

Pareto distribution. The three methods are maximum likelihood estimation, the method of

probability weighted moments, and the ordered sample least squares approach. The first two

methods, applied to the GPD, are discussed by Hosking and Wallis [71]. The ordered sample

least squares approach is a new technique developed in this work. The performance of the three

estimation procedures are compared on the basis of estimation bias and mean square error.

10.3.1.1 Maximum Likelihood Estimation

The probability density function corresponding to the GPD from equation (10.16), with x

replaced by z, is
1 fZ L-1g(z) -a( + a) ._ (10.20)

Given a sample vector [z1,Z2,,...,Zm] from the GPD the joint density function Lz(z) of the m

samples, assuming independence is given by

Lz(() 1i + (10.21)
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To theoretically obtain the maximum likelihood estimates of a and -y, the logarithm of the joint

deusity function in equation (10.21) is differentiated with respect to a and , respectively, and the

derivatives are set to zero. Let the largest m observations from the unknown distribution whose

tail is being modeled by GPD be placed in the vector [Xn,-m+i, Xnm+2, ... , Xn]. Translation of the

tail region to the origin results in the vector [Xnm+1 -X0, Xnm+2•-0,, .t, - X0] = [ZI, Z2, ... , Zm,,.

Letting T = '/a in equation (10.21) and differentiating the logarithm of the joint density function

with respect to a we get

d dm-- log LZ() = -fim log (o) + (1 + (,o)-') og(1 + TZ,)]

= - + (1 - -), log(1 + y,/o). (10.22)
01

By setting equation (10.22) to zero, an expression for a that satisfies the equation is

a(r) = log(1 + rz,)/(mr). (10.23)
i--1

The expression for a is now substituted into equation (10.22), so as to obtain a function of r

alone. * is derived by differentiating the quantity

m log a(r) + (1 + 1/(ou(Tr)r)) log(1 + T"z,) (10.24)

with respect to r and setting the derivative equ-A to zero with the constraint that Tzi > -1.

However, the differentiation leads to a nonlinear equation whose analytical solution is not known.

This difficulty is circumvented by minimizing equation (10.24) numerically with respect to T.

The numerical minimization was performed using the Nelder-Mead algorithm [72]. Once the

estimate for r has been obtained, then & is obtained from equation (10.23) and -Y is estimated

by j = 6*.
10.3.1.2 Probability Weighted Moments

The probability weighted moments of a continuous random variable Z with distribution func-

tion G are the quantities

Mp=,., = E[ZPG"(Z)(1 - G(Z))1] (10.25)
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where E is the expectation operator and p, r and a are real numbers. For the GPD it is convenient

to choose p = 1 and r = 0, respectively. Then the probability weighted moments are

Mi,o,0 = E[Z(l - G(Z))°J (10.26)

For the GPD there are two parameters to be estimated, o, and -. Substituting 3 - 0, in equation

(10.26), we get

Co = MI,o,o = E[Z] = o0 z (1 + 2ý)_frdZ. (10.27)

Letting 1 + 9 - Y, equation (10.27) results inCr

Co= "j'(Y- 1)Y-X-'dY
--

- -• + 1 -- 1 1

0" (10.28)

Letting a - 1 in equation (10.26) we obtain

0o Z "Z) Yid. 1.9Cl = M =o,= E[Z(1 - G(Z)] = -(I + --'(1 +-)-dZ. (10.29)

Letting 1 + 2z- Y, as before, equation (10.29) results in

--- 1'(Y - 1)Y-l-ldY

o • Y-"-'- -Y-•']00
-2 -1

or (10.30)
2(2 - -)

The values of eo and E1 are obtained from equations (10.28) and (10.30), respectively, for given

values of or and 7. Since there are two equations in two unknowns or and y can be obtained as

functions of Eo and el. Solving for o, and 7 we obtain

& = 2eoej/(eo - 2e1 ) (10.31)
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and

2 - e _ - 2ei) (10.32)

where co and el are estimated from the data by the estimators io = =T, zi/m and l =
,=I(m - i)zi/{m(m - 1)) [71]. Once the values of fo and il are obtained the estimates of a

and -/ are obtained by making use of equations (10.31) and (10.32). Note that the method of
probability weighted moments involves computationally simple expression for the estimates.
10.3.1.3 The Ordered Sample Least Squares Method - A new approach

The procedure used in maximum likelihood estimation is based on minimizing the quantity
in equation (10.24). Similarly, the probability weighted moment estimates are obtained by
equating with the sample based values the theoretical values of the quantity E[Z(1 - G(Z))*],
s=0,1, where Z = X - x0. The ordered sample least squares method is based on the principle
of minimizing the squared distance between the ordered sample and the expected value of the
ordered sample. Computer simulations reveal that this can be a more suitable approach for

estimating the parameters.

In Appendix C the method for evaluating the mean and the variance of the rth ordered statistic
from a sample size n is presented. For the Generalized Pareto Distribution the mean and the
variance of the rh order statistic can be derived since the probability distribution function is
known in closed form. Let x be replaced by z in equation (10.15) and let G(z) = u. Solution

for z results in

z = G-1 (u) = -[(1 - u)-" - 1(1033)

Making use of the above equation and equation (C.62) in Appendix A, the expected value of Z,
is

E(Zr)= n! ((1 - U)-- 1)ur-l(1- u),-rdu]. (10.34)

The integral in the above equation can be broken into two parts as follows.

E(Z) (r- 1)!( -n ! [](1 - u)-IYur-l(1 - u)"-du - J U-1(1 - u)"'du]. (10.35)

From results presented in Gradshtyn and Ryzhik [45], the expression for E(Z,) becomes

a= a' n! (r-1)!(n-r--)! (r-1)!(n-r)!]
f (r - 1)!(n - r)! (n -)!!
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= -�0[Tl(f- r - 1]
(•( - r)((n-7) 1

S I r( + 1)r(n - r- + 1) 1 ] (10.36)
= r(n -r + 1)r(n- -+ 1)

To calculate the variance of Z, we first calculate E(Z2). Making use of equation (10.33) and
equation (C.65) in Appendix C, the expected value of Z,2 is

g( _,2) = '2 n-1!( [ (1W-_u)-_-l -)2Ur-(1 - u)"-rdu]. (10.37)
E(Z~~~) -2 (r - 1)!(n - r)!lo(1u U

The integral in the above equation can be rewritten as follows:

E(Z,2 ) - 2 )n, ((1-u)-2-- 2(1 - u)-" + l)ur-l(1 - u)"-du]. (10.38)

72 (r -1)!(n, r)! ,J1038

Making use of results from [73], the above integral evaluates to

2'= a 2  n! [(n- r- 27)! 2(n- r- -)!/+1E(Zr) = 72 (n- nr)! -n-2 2y)! (n-])!

= a2 r(n + 1) [r(n - 2-t + 1) 2r(n - r - Y + 1)+1] (10.39)
-92r(n-r+l)1'r(n-2y +1) r(n-f+ 1)

From equations (10.36) and (10.39) and using the result Var(Zr) = E(X,?) - E 2(Xr), we have
- a2 r(n + 1) [1'(nr-27/+I)

Var(Z.) 27 r(n - r + 1) r(n - 2-y + 1)
2r(n-_r--t) +_ In+rr-(r+1)r(n- - y- + 1)

21'(n 11 -- f 0'I[I 1] (10.40)r(n -y + 1) yr(n -r + 1)r(n -y + 1)

Simplifying the above equation results in

-a2 r(n+l) r(n-r-2"f+Z) r 2(n+l) r2(n-r-y+l)Var(Z))=7 (n-r+X) r(n-2y+1) -r 2(n -. rr+l) r 2(n-+-) t (1.41)

Letting Qr("7) = r(n-+l) (n-Arz4.1) , results in
r(n-rv+1,-n--y-.l

E(Zr) = y, = -{Qr(f) - 1} (10.42)

Or2

Var(Z,) = c, •'{Qr(2 -y (Q.(7))'}. (10.43)

194



A computationally simpler expression can be found for Q,(7) by making use of the properties of

gai "unctions. Dividing Q,(-) by Q.-i(7) we get
r~n-td rn-r--V+ I

Q,(_) 0 (-0+1 n-v+ _ n - r + 1 (10.44)
- ) F-r-t2 n - r - (10.44)r(n-r+2) r(n-,Y+)

Equation (10.44) reduces to

Q,,() = n 1=I(n- i + 1)/(n- i + 1 -7). (10.45)

To find the least squares estimates of the parameters we write the following non-linear model

for the rth sample order statistic

Z, = E(Z,.) + e,, r= 1,2,...,in (10.46)

where the error term e, has a distribution with mean 0 and variance a. . Since the order statistics

are not independent, the errors are also not independent. Because of the non-linear structure of

the model in equation (10.46) and correlated errors, least squares estimation does not offer a

straightforward solution to the estimation problem. Even so, in this study we proceed to use the

ordered sample least squares (OSLS) procedure to estimate the parameters.

In equation (10.42), we note that the scale parameter or appears linearly whereas the shape

parameter y does not. The least squares estimates are obtained by minimizing the quantity

S = 2 = "(Z, - a(Q,(/) - I)/,)2. (10.47)
r=1 r=1i

Since or appears linearly in the above expression, minimization can be achieved analytically.

Differentiating equation (10.47) with respect to a and setting the derivative equal to zero results

in

2 -(Z (Q() - 1)(-(Qr(y) - 1) = 0. (10.48)
F, -(QV i )=0

The solution for a from the above equation is

bQE)) = Zr(Q,(e,) - 1) (10.49)
, , f(Qr(_y) - 1)2

The expression for & is substituted in equation (10.47) and the resulting expression is minimized
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with respect to -. The resulting expression after the substitution is nonlinear and minimization

cannot be performed analytically. Using the Nelder-Mead algorithm (72], the minimization is

done numerically. Once the estimate of ^ is obtained, & is obtained from equation (10.49).

Recall that the GPD is being used to approximate the tail of the underlying distribution.

Hence, the ordered statistics Z,, r = 1,2, ... , m, from the GPD actually correspond to the ordered

"statistics X,,-.,+i - x0, Xn-,,m+2 - x0...Xn - z0 from the underlying distribution.

The least squares procedure results in a computationally convenient algorithm. It is empha-

sized that the minimization of S is carried out only with respect to the single parameter /.

Furthermore, the underlying criterion is based on minimizing the distance between the empirical

values and the expected values of the ordered samples. Some numerical comparisons are given

in section 10.4.

10.3.2 Estimation of Thresholds

The Generalized Pareto Distribution that is estimated from the data is used to approximate

the tail of the unknown, underlying distribution. We now show that the threshold is related to

the approximating distribution function in a direct manner. With reference to equation (10.19),

let ýp denote the threshold estimate of the threshold corresponding to a false alarm probability

p. We then have

F(iOp) = -p = 1 - a[1 + a( - x0)] 1 /•. (10.50)

Solution for ,qp results in

-p = xO + u(q-1 - 1)/7 (10.51)

where a = 1 - F(xo), q = (1 - p)/a and xo = F- 1 (1 - a). For many applications DuMouchel

[70] suggests that a = 0.1 be used. As will be discussed in the subsequent sections, the optimal

value of a depends on the threshold being estimated. Since the distribution function F(x) is not

known, xo cannot be determined for a given value of a. Therefore, following common practice,

the sample order statistic X,,-,m, where m = [an] and [. ] denotes the integer part operator, is

used as an estimate of xo.
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10.4 Numerical Results
10.4.1 Characterisation of Tail Shape for Known Distributions

We first discuss a method for estimating the parameters of the GPD when the underlying distri-

bution is known. Choose xo such that 1 -F(xo) = 0.1. Then define the points pi if=f1,2,...1000 by

S= 0.90005 + 0.0001(i - 1). (10.52)

Analytically evaluate xi = F-1(p.) from the known distribution. Using the 1000 values of

xi, the maximum likelihood estimation, the ordered sample least squares and the probability

weighted moments procedures were applied to determine the corresponding 7 values for various

distributions. The results are given in Table 10.1. The number in parentheses for the Weibull

and Lognormal distributions is the value of the shape parameter. For the remaining distributions

the number denotes the degrees of freedom. Since a is a scale parameter, the shape parameter

-y best describes the tail shape. For the exponential and the uniform distributions the value of Y

can be obtained theoretically. -y = 0 for the exponential distribution and is -1 for the uniform

distribution. Since the size of the tail decreases with decreasing 7, the relationship between the

tail behavior and the corresponding values of the shape parameter - can be clearly inferred from

this table.
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Distribution OSLS NL PWM
Gaussian -0.144 -0.151 -0.174

Weibull(3) -0.163 -0.168 -0.194
Weibull(.67) 0.108 0.129 0.137
Weibull(.5) 0.201 0.265 0.263

Student-t(3) 0.290 0.260 0.261
Student-t(5) 0.132 0.099 0.090
Student-t(8) 0.031 0.006 -0.010

Lognormal(l) 0.232 0.259 0.258
Chi-square(1) 0.030 0.034 0.044
Chi-square(4) -0.024 -0.033 -0.034
Chi-square(8) -0.047 -0.058 -0.064

Table 10.1: Tail parameter y describing the upper ten percent of various distributions.

10.4.2 Empirical Properties of the Estimators for Known Distributions

Seven distributions with widely differing tail behaviors were chosen in order to investigate the

adequacy of the approximation of extreme tails by the GPD and to compare the three estimation

procedures. The gamma distribution and Weibull distribution with shape parameter of value 3

have tails lighter than those of the exponential PDF. The tails of the chi-square distribution with

4 degrees of freedom and the student-T distribution with 8 degrees of freedom are approximately

the same as those of the exponential PDF. Finally, the student-T distribution with 4 degrees of

freedom and the Lognormal distribution with shape parameter of value 1 have tails heavier than

those of the exponential PDF.

Let 77 and 4 denote the true and estimated thresholds, respectively. A Monte Carlo experiment

was performed to investigate the normalized bias, 4l- and th( normalized mean square error

(l•)2 of the proposed threshold estimates. The four sample sizes given by m = 25,50, 100 and

1000 were considered. Each set of samples was obtained by generating n observations and taking

the largest rn = 0.ln observations. For example, a set of samples of size 25 was obtained by

"selecting the largest 25 observations from a collection of size 250 samples. For all four different

values of m, k=200,000/m trials were performed for each of the seven distributions. The median

of the normalized bias values were computed for each distribution and estimation procedure. The

results for Pp = 10-', k=2,3,...7 are given in Table 10.2. Similarly the median of the positive

square root of the normalized mean square error are presented in Table 10.3. The results in the

"two tables differ because the sign of (j - r)/rI is lost in the normalized root mean square values

computed in Table 10.3. Extremely poor estimates for i7 were obtained in some of the trials.
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m=25
PF 10-3 10-3 10-4 10"5 10-1 T"i0-ý

Normal OSLS -0.0112 0.0043 -0.0040 -0.0276 -0.0571 -0.087 2
Normal ML -0.0034 0.0187 0.0328 0.0358 0.0281 0.0137
Normal PWM -0.0084 -0.0208 -0.0560 -0.1015 -0.1464 -0.1924

Weibull(3) OSLS -0.0048 0.0013 -0.0041 -0.0202 -0.0418 -0.0619
Weibull(3) ML 0.0039 0.0481 0.0938 0.1374 0.1776 0.2137
Weibull(3) PWM -0.0037 -0.0106 -0.0333 -0.0635 -0.0919 -0.1216

t(4) OSLS -0.0424 -0.0792 -0.1658 -0.2727 -0.3872 -0.4922
t(4) ML -0.0166 -0.1115 -0.2526 -0.4045 -0.5416 .0.6541
t(4) PWM -0.0218 -0.0929 -0.2160 -0.3498 -0.4761 -0.5881
t(8) OSLS -0.0221 -0.0186 -0.0572 -0.1164 -0.1975 -0.2879
t(8) ML -0.0104 -0.0468 -0.1169 -0.2077 -0.3055 -0.4033
t(8) PWM -0.0129 -0.0452 -0.1095 -0.2039 -0.3063 -0.4115

Chi-sq(4) OSLS -0.0209 -0.0039 0.0241 0.0333 -0.0088 -0.0104
Chi-sq(4) ML -0.0037 0.0943 0.2518 0.4571 0.6185 0.8810
Chi-sq(4) PWM -0.0144 -0.0205 -0.0334 -0.0576 -0.1254 -0.1624
Lognormal OSLS -0.0835 -0.0982 -0.0634 0.0016 0.1007 0.2567
Lognormal ML -0.0058 0.1836 0.5932 1.2736 2.4832 4.4947
Lognormal PWM -0.0543 -0.0878 -0.0931 -0.0728 -0.0228 0.0639

Pareto(-0.25) OSLS -0.0092 0.0208 0.0423 0.0631 0.0780 0.0874
Pareto(-0.25) ML -0.0030 0.0523 0.1190 0.1868 0.2479 0.2969
Pareto(-0.25) PWM -0.0077 0.0052 0.0121 0.0199 0.0237 0.0278

Table 10.2: Median of the normalized bias values for different percentiles. OSLS:Ordered
Sample Least Square, ML:Maximum Likelihood, PWM:Probability Weighted Moments
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m=50
PF 10-_ j-0 1-- 10-4 10-5 10-1 10-7

Normal OSLS 0.0036 0.0073 -0.0068 -0.0354 -0.0676 -0.1022
Normal ML 0.0042 0.0323 0.0497 0.0578 0.0528 0.0380
Normal PWM -0.0012 -0.0118 -0.0459 -0.0861 -0.1318 -0.1742

Weibull(3) OSLS -0.0022 -0.0007 -0.0133 -0.0337 -0.0571 -0.0838
Weibull(3) ML 0.0056 0.0500 0.0991 0.1436 0.1847 0.2199
Weibull(3) PWM -0.0014 -0.0105 -0.0342 -0.0629 -0.0937 -0.1256

t(4) OSLS -0.0147 -0.0646 -0.1800 -0.3209 -0.4501 -0.5063
t(4) ML -0.0068 -0.0867 -0.2264 -0.3736 -0.5120 -0.6291
t(4) PWM -0.0078 -0.0622 -0.1662 -0.2973 -0.4233 -0.5391
t(8) OSLS -0.0062 -0.0222 -0.0841 -0.1723 -0.2694 -0.3703
t(8) ML -0.0031 -0.0502 -0.1352 -0.2385 -0.3460 -0.4517
t(8) PWM -0.0032 -0.0336 -0.1064 -0.2041 -0.3051 -0.4046

Chi-sq(4) OSLS -0.0092 -0.0004 0.0051 0.0060 -0.0498 -0.0686
Chi-sq(4) ML 0.0115 0.1134 0.2765 0.4775 0.6368 0.9150
Chi-sq(4) PWM -0.0041 -0.0087 -0.0191 -0.0407 -0.1123 -0.1488

Lognormal OSLS -0.0544 -0.0594 -0.0272 0.0458 0.1573 0.3274
Lognormal ML 0.0092 0.2177 0.6336 1.3811 2.6197 4.7101
Lognormal PWM -0.0302 -0.0391 -0.0185 0.0413 0.1480 0.2977

Pareto(-0.25) OSLS -0.0052 0.0100 0.0214 0.0326 0.0404 0.0448
Pareto(-0.25) ML 0.0005 0 0463 0.1011 0.1560 0.2003 0.2357
Pareto(-0.25) PWM -0.0050 -0.0018 -0.0012 -0.0019 -0.0023 -0.0012

Table 10.2: Median of the normalized bias values for different percentites. (contd.)
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m=100
Pr 10-7 10-a 10-4-1-0--r 10-8 10-7

Normal OSLS 0.0017 -0.0016 -0.0253 -0.0637 -0.1040 -0.1464
Normal ML 0.0068 0.0263 0.0306 0.0229 0.0063 -0.0185
Normal PWM 0.0018 -0,0181 -0.0549 -0.1022 -0.1524 -0.1986

Weibull(3) OSLS 0.0005 -0.0017 -0.0164 -0.0376 -0.0624 -0.0888
Weibull(3) ML 0.0037 0.0270 0.0564 0.0840 0.1003 0.1158
Weibull(3) PWM 0.0004 -0.0095 -0.0320 -0.0607 -0.0918 -0.1220

t(4) OSLS -0.0064 -0.0441 -0.1421 -0.2880 -0.3922 -0.5031
t(4) ML -0.0004 -0.0564 -0.1650 -0.2907 -0.4174 -0.5354
1Q) PWM -0.0003 -0.0478 -0.1403 -0.2636 -0.3809 -0,4949

- t8) OSLS -0.0024 -0.0134 -0.0751 -0.1606 -0.2578 -0.3548
t(8) ML 0.0011 -0.0342 -0.1145 -0.2123 -0.3157 -0.4216
t(8) PWM 0.0013 -0,0271 -0.0955 -0.1888 -0.2892 -0.3916

Chi-sq(4) OSLS -0.0032 -0,0028 -0.0077 -0.0198 -0.0841 -0.1111
Chi-sq(4) ML 0.0175 0.1189 0.2655 0.4581 0.5917 0.8298
Chi-sq(4) PWM -0.0004 -0.0089 -0.0238 -0.0448 -0.1143 -0.1520

Lognormal OSLS -0.0159 -0.0542 -0.0876 -0.1089 -0.0940 -0.0617
Lognormal ML -0.0111 -0.0251 -0.0068 0.0536 0.1499 0.3104
LognormalI PWM -0.0165 -0.0210 0,0141 0.0924 0.2315 0.3965

Pareto(-0.25) OSLS -0.0023 0.0109 0.0255 0.0350 0.0419 0.0471
Pareto(-0.25) ML 0.0033 0.0544 0.1170 0.1739 0.2215 0.2611
Pareto(-0.25) PWM -0.0014 0.0004 0.0052 0.0084 0.0112 0.0129

Table 10.2: Median of the normalized bias values for different percentiles. (contd.)
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m=1000
Pr 10- 10-a 10-4 10"6 10-6 10-'

Normal OSLS 0.0035 -0.0013 -0.0244 -0.0613 -0.1010 -0.1432
Normal ML 0.0059 0.0017 -0.0259 -0.0626 -0.1075 -0.1476
Normal PWM 0.0028 -0.0192 -0.0586 -0.1064 -0.1560 -0.2016

Weibull(3) OSLS 0.0013 -0.0023 -0.0175 -0.0381 -0.0627 .-0.0885
Weibull(3) ML 0.0020 -0.0018 -0.0159 -0.0386 -0.0641 -0.0909
Weibull(3) PWM 0.0010 -0.0092 -0.0297 -0.0578 -0.0880 -0.1192

t(4) OSLS 0.0058 -0.0044 -0.0605 -0.1574 -0.2690 -0.3715
t(4) ML 0.0141 -0.0137 -0.1018 -0.2167 -0.3326 -0.4406
C(4) PWM 0.0141 -0.0176 .0.1104 -0.2277 -0.3479 -0.4598
t(8) OSLS 0.0033 -0.0021 -0.0452 -0.1167 -0.2001 -0.2896
t(8) ML 0.0070 -0.0117 -0.0664 -0.1464 -0.2404 -0.3382
t(8) PWM 0.0045 -0.0219 -0.0896 -0.1825 -0.2857 -0.3862

Chi-sq(4) OSLS 0.0003 0.0012 -0.0057 -0.0167 -0.0826 -0.1107
Chi-sq(4) ML 0.0012 -0.0021 -0.0152 -0.0354 -0.1026 -0.1349
Chi-sq(4) PWM 0.0006 -0.0011 -0.0080 -0.0263 -0.0934 -0.1211

Lognormal OSLS -0.0038 -0.0221 -0.0259 0.0055 0.0646 0.1638
Lognormal ML -0.0098 0.0063 0.0616 0.1767 0.3495 0.5999
Lognormal PWM -0.0128 -0.0004 0.0567 0.1683 0.3400 0.5771

Pareto(-0.25) OSLS 0.0002 0.0002 0.0012 0.0007 0.0003 0.0000
Pareto(-0.25) ML -0.0002 -0.0010 -0.0044 -0.0061 -0.0081 -0.0094
Pareto(-0.25) PWM 0.0003 -0.0011 -0.0007 -0.0006 -0.0035 -0.0038

Table 10.2: Median of the normalized bias values for different percentiles.
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m=25
Pr 10-7 10-3 10-4 10-0 10"5 10-T

Normal (SLS 0.0558 0.1127 0.2022 0.2825 0.3507 0.4044
Normal ML 0.0558 0.0909 0.1459 0.2057 0.2588 0.3070
Normal PWM 0.0559 0.1215 0.2121 0.2920 0.3586 0.4117

Weibull(3) OSLS 0.0257 0.0577 0.1089 0.1580 0.2031 0.2415
Weibull(3) ML 0.0258 0.0531 0.0950 0.1378 0.1780 0.2139
Weibull(3) PWM 0.0256 0.0624 0.1149 0.1659 0.2110 0.2495

t(4) OSLS 0.1069 0.2261 0.4160 0.5989 0.7397 0.8405
t(4) ML 0.1051 0.2353 0.4157 0.5812 0.7127 0.8097
t(4) PWM 0.1019 0.2329 0.4213 0.5956 0.7368 0.8344
t8) OSLS 0.0781 0.1666 0.3073 0.4455 0.5701 0.6730
t(8) ML 0.0779 0.1493 0.2554 0.3648 0.4689 0.5649
t(8) PWM 0.0775 0.1752 0.3180 0.4544 0.5783 0.6787

Chi-sq(4) OSLS 0.0610 0.1313 0.2441 0.3592 0.4650 0.5455
Chi-sq(4) ML 0.0721 0.2179 0.4459 0.7901 1.1783 1.7789
Chi-sq(4) PWM 0.0592 0.1384 0.2500 0.3622 0.4666 0.5446

Lognormal OSLS 0.1335 0.2452 0.4362 0.6271 0.7785 0.8785
Lognormal ML 0.1439 0.4007 0.7303 1.4149 2.7312 5.0774
Lognormal PWM 0.1260 0,2582 0.4463 0.6281 0.7737 0.8705

Pareto(-0.25) OSLS 0.0409 0.0787 0.1348 0.1752 0.2017 0.219
Pareto(-0.25) ML 0.0402 0.0763 0.1419 0.2075 0.2640 0.3127
Pareto(-0.25) PWM 0.0411 0.0866 0.1430 0.1817 0.2084 0.2240

Table 10.3: Median RMS errors for various percentiles. OSLS:Ordered Sample Least
Square, ML:Maximum Likelihood, PWM:Probability Weighted Moments
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m=50
Pr 1O- 10- a 10-4 10-8 10-5 10-T

Normal O S 0.0401 0.0772 0.1391 0.1981 0.2548 0.3042
Normal ML 0.0394 0.0689 0.1122 0.1559 0.1959 0.2328
Normal PWM 0.0399 0.0865 0.1530 0.2192 0.2759 0.3273

Weibull(3) OSLS 0.0180 0.0393 0.0743 0.1135 0.1511 0.1854
Weibull(3) ML 0.0185 0.0509 0.0997 0.1447 0.1859 0.2214
Weibull(3) PWM 0.0180 0.0442 0.0852 0.1263 0.1661 0.2017

t(4) OSLS 0.0779 0.1826 0.3506 0.5179 0.6633 0.7724
t(4) ML 0.0768 0.1910 0.3602 0.5244 0.6688 0.7762
t(4) PWM 0.0760 0.1778 0.3332 0.4899 0.6303 0.7386
t8S) OSLS 0.0561 0.1228 0.2316 0.3503 0.4666 0,5698
t(8) ML 0.0553 0.1219 0.2226 0.3385 0.4504 0.5529
t(8) PWM 0.0554 0.1306 0.2405 0.3613 0.4793 0.5807

Chi-sq(4) OSLS 0.0431 0.0890 0.1678 0.2509 0.3351 0.4109
Chi-sq(4) ML 0.0489 0.1661 0.3386 0.5487 0.7664 1.1112
Chi-sq(4) PWM 0.0426 0.0939 0.1747 0.2584 0.3431 0.4185
Lognormal OSLS 0.0975 0.1834 0.3439 0.5155 0.6660 0.7990
Lognormal ML 0.0993 0.3381 0.6769 1.3921 2.6297 4.7240
Lognormal PWM 0.0864 0.1954 0.3510 0.5143 0.6621 0.8012

Pareto(-0.25) 'OSLS 0.0289 0.0534 0.0890 0.1162 0.1346 0.1486
Pareto(-0.25) ML 0.0284 0.0602 0.1149 0.1U75 0.2084 0.2417

_Pareto(-0.25) PWM_ 0.0293 0.0616 0.1032 0.1320 0.1533 0.1666

Table 10.3: Median RMS errors for various percentiles. (contd.)
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m=100

Pr 10-2 10-7 10-4 10-0 I0-0 10-7

Normal OSLS 0.0284 0.0522 0.0964 0.1414 0.1863 0.2305
Normal ML 0.0290 0.0517 0.0840 0.1123 0.1433 0.1689
Normal PWM 0.0281 0.0584 0.1090 0.1635 0.2134 0.2585

Weibull(3) OSLS 0.0128 0.0273 0.0529 0.0811 0.1101 0.1378
Weibull(3) ML 0.0131 0.0389 0.0790 0.1202 0.1570 0.1868
Weibull(3) PWM 0.0126 0.0312 0.0622 0.0942 0.1284 0.1590

t(4) OSLS 0.0550 0.1400 0.2801 0.4336 0.5739 0.6909
t(4) ML 0.0525 0.1377 0.2716 0.4165 0.5497 0.6627
t(4) PWM 0.0527 0.1334 0.2619 0.4046 0.5323 0.6469
t(8) OSLS 0.0386 0.0914 0.1770 0.2761 0.3758 0.4732
t(8) ML 0.0388 0.0896 0.1735 0.2710 0,3734 0.4763
t(8) PWM 0.0384 0.0869 0.1727 0.2750 0.3777 0.4817

Chi-sq(4) OSLS 0.0287 0.0649 0.1264 0.1932 0.2699 0.3373
Chi-sq(4) ML 0.0350 0.1437 0.2959 0.4688 0.6092 0.8592
Chi-sq(4) PWM 0.0283 0.0686 0.1289 0.1948 0.2730 0.3383

Lognormal OSLS 0.0683 0.1527 0.2794 0.4174 0.5299 0.6290
Lognormal ML 0.0052 0.1515 0.2690 0.4039 0.5465 0.6769
Lognormal PWM 0.0647 0.1417 0.2519 0.3805 0.5218 0.6&10

Pareto(-0.25) OSLS 0.0201 0.0372 0.0637 0.0845 0.0997 0.1110
Pareto(-0.25) ML 0.0197 0.0569 0.1192 0.1746 0.2221 0.2613
Pareto(-0.!5L PWM 0.0201 0.0434 0.0718 0.0952 0.1108 0.1220

Table 10.3: Median RMS errors for various percentilev. (contd.)
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m=1000
p 10-3 10-3 10-4 10-O1 10- 10-7

Normal OSLS 0.0077 0.0182 0.0373 0.0643 0.1017 0.1440
Normal ML 0.0087 0.0160 0.0362 0.0632 0.1075 0.1476
Normal PWM 0.0081 0.0247 0.0586 0.1064 0.1560 0.2016

Weibull(3) OSLS 0.0037 0.0086 0.0194 0.0393 0.0630 0.0890
Weibull(3) ML 0.0040 0.0078 0.0191 0.0397 0.0649 0.0909
Weibull(3) PWM 0.0036 0.0108 0.0300 0.0578 0.0880 0.1192

t(4) OSLS 0.0203 0.0534 0.1383 0.2476 0.3717 0.4763
t(4) ML 0.0213 0.0447 0.1083 0.2168 0.3326 0.4406
t(4) PWM 0.0213 0.0499 0.1207 0.2306 0.3479 0.4598
t(8) OSLS 0.0135 0.0298 0.0726 0.1379 0.2121 0.3018
t(8) ML 0.0129 0.0272 0.0750 0.1518 0.2436' 0.3406
t(8) PWM 0.0129 0.0349 0.0939 0.1830 0.2863 0.3863

Chi-sq(4) OSLS 0.0104 0.0207 0.0362 0.0588 0.1094 0.1408
Chi-sq(4) ML 0.0099 0.0192 0.0363 0.0589 0.1095 0.1429
Chi-sq(4) PWM 0.0100 0.0211 0.0400 0.0602 0.1103 0.1433
Lognormal OSLS 0.0206 0.0528 0.1222 0.1836 0.2429 0.3276
Lognormal ML 0.0195 0.0434 0.0984 0.2012 0.3581 0.5999
Lognormal PWM 0.0201 0.0410 0.0927 0.1919 0.3445 0.5770

"Pareto(-0.25) OSLS 0.0061 0.0101 0.0158 0.0213 0.0247 0.0278
Pareto(-0.25) ML 0.0063 0.0092 0.0154 0.0198 0.0243 0.0268
Pareto(-0.25) PWM 0.0065 0.0126 0.0222 0.0306 0.0375 0.0428

Table 10.3: Median RMS errors for various percentiles.
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These poor estimates could severely influence an arithmetic mean of the estimates. To avoid this

problem, median values were used in place of the arithmetic means.

The empirical results in Table 10.2 indicate that the newly proposed ordered sample least

squares estimator generally has a smaller normalized bias than the other estimators for small or

moderate sample sizes. Overall the second smallest normalized bias is achieved by the probability

weighted moments method. The maximum likelihood estimator has the largest normalized bias

when PF _Ž 10-5, especially for the long tailed distributions. The normalized bias of all three

estimators decrease as the sample size increases. When the parent distribution is GPD,all three

estimators perform very well. Even so, the ordered sample least square estimator outperforms

the others. The relatively strong performance for the GPD is explained as follows. The extreme

value theory is based on the premise that tails of smooth continuous distributions tend towards

the GPD. For the GPD, this premise is exactly satisfied. Hence, the corresponding performance

is noticeably better than for other distributions.

The results for the median of the normalized root mean square error are surprising. The

maximum likelihood estimator is known to be asymptotically efficient. This is always true when

the samples are drawn from the underlying distribution (in our case from the generalized Pareto

distribution). This property of the maximum likelihood estimator can be observed in Table 10.3

when m =1000 but not for smaller sample sizes. Although the ordered sample least squares

method has a smaller normalized root mean square error in many cases, there is no clear winner

with respect to this criterion.

From the empirical results which are based on a limited number of distributions and sample

sizes, it is not easy to make a strong recommendation as to which method to use in practice.

However, in terms of the normalized bias, the ordered samples least squares estimator appears

to perform better over the other estimators in estimating the large thresholds when PF < 106.

In any event, it is seen that the extreme value theory can be used successfully to determine

threshold values, when the false alarm probability is very small.

Two practical advantages of estimation based on extreme value theory are: 1) When there is

a constraint on the number of samples, the thresholds obtained from extreme value theory are

theoretically expected to be closer to the true thresholds than those obtained by conventional

Monte Carlo techniques. However, in both techniques an increase in sample size offers greater

accuracy in estimating thresholds. 2) Because the estimate of the tail of the underlying distribu-
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tion is in closed form, estimation can be made for thresholds corresponding to extremely small

false alarm probabilities independent of the sample size. In experiments with fixed amounts of

data, this is an important advantage.
10.4.3 Effect of the Choice of a on the Threshold Estimates

As was mentioned previously, only samples whose value exceed x0 are used in estimating the

GPD parameters. The value of x0 is determined by a. The results presented in Tables 10.2-10.3

were obtained by means of Monte Carlo experiments where a = 0.1 was u3ed independent of the

value of PF for which the threshold was being estimated. When the false alarm probability was

extremely small, the bias and root mean square errors were quite large for some distributions.

This is due to the fact that the GPD is intended to model the extreme tail of the underlying

distribution. The smaller the value of a, the better will be the GPD approximation over the

extreme tail being approximated. When a is chosen too large, a better fit is found for that

portion of the distribution closer to the center at the expense of lesser accuracy in the extreme

tail. Of course, there is a tradeoff between the choice of a and the number of data samples

available for determining the parameters of the GPD.

In our application the major objective is to approximate the extreme tails corresponding to

thresholds of 10-6 or smaller. Consequently, we explored the implications of selecting values

less than 0.1 for a. To accomplish this, we obtained the theoretical values of xi for the stan-

dard Normal and Lognormal distributions corresponding to F-1 (pi where pi -=. : i=1,2,...n,n

and n = 1,000 and 10,000 respectively. These two distributions are chosen because they rep-

resent extremes: The Normal distribution is light tailed while the Lognormal is a heavy tailed

distribution.

The number of the xi samples used to determine the parameters of the GPD is given by

an. The parameters were estimated using the OSLS procedure for values of a equal to 0.1,

0.05 and 0.01. The resulting GPDs were then used to determine the thresholds for false alarm

probabilities given by PF = 10' where k=2,3,...7. These results are presented in figure 10.6,

where both the theoretical and approximated thresholds are plotted as a function of k for (A)

Normal distribution (n=10,000), (B) Normal distribution (n=1000), (C) Lognormal distribution

(n=10,000), (D) Lognormal distribution (n=1000). For k > 5, it is seen that a = 0.01 (curve b)

appears to be the best choice for approximating the thresholds. The best results were obtained

with n = 10,000. However, good results were obtained with n = 1,000.
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10.5 Examples
10,,5.1 Known Distribution Case

To evaluate the accuracy of the threshold value estimates, 10000 random samples were gener-

ated from the Gaussian and Lognormal distributions and the upper tails of these two distributions

were modeled as Generalized Pareto. In sections 10.4.1 and 10.4.3, theoretical values given by

x- = F-1 (pi) were used to estimate the tail. In this section randomly generated samples are

used in place of the theoretical values. Choosing a = 0.01, the theoretical thresholds of the

Gaussian distribution for PF = 1 0 -k k = 2,3...7 are 2.326, 3.090, 3.719, 4.265, 4.753 and 5.199,

respectively. The thresholds estimated are 2.315, 3.223, 3.847, 4.370, 4.855 and 5.292 . For the

Lognormal distribution the theoretical thresholds corresponding to PF = 10-4 k = 2, 3... 7 are

10.240, 21.982, 41.224, 71.157, 115.981 and 181.152. Once again, using a=0.01, the thresholds

estimated are 10.449, 22.862, 42.473, 69.216, 112.229 and 183.495. Note that the estimated re-

sults are very close to the true thresholds. We note here that these results were obtained on the

basis of one set of observations from the two known distributions, corresponding to a particular

seed value. For a different set of samples the estimates will be different depending on the tail

behavior of that set of samples. But, unless the samples are really not a true representative of the

distribution from which they are drawn, we expect that the estimates based on different samples

should give threshold values that yield false alarm probabilities close to the design value.

10.5.2 An Unknown Distribution Case

In the previous section the underlying distributions were known to us and the estimates based

on the extreme value theory were encouraging for both light and heavy tail behavior. In this

example, we take a non-Gaussian problem where the underlying distribution is unknown.

The two hypotheses characterizing the detection problem are given in equations (9.1-9.2). We

consider the weak signal case for which the clutter is much stronger than the background noise.

The locally optimum detector (LOD) [74] has been shown to be suitable for the weak signal

detection problem. Under hypothesis H1 , the signal is denoted by Osi, where 0 is a measure of

the signal strength. For a deterministic signal and a given set of observations r = [rl, r 2 ... , rN]T

the LOD performs the LRT
OPRIH, (flff) 10 =0

L() -' > (10.53)
OPRIH0(1:IHo)

where P1n, (rIHi) is the joint PDF of rl, r2,...rN under hypothesis Hi: i=0,1.

Martinez, Swaszek and Thomas [75] studied the locally optimal detection problem for non-
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Gaussian distributions and considered the bivariate Laplace distribution as an example. In this
section we illustrate the procedure for determining the thresholds of a LOD based on N=2 and
the received samples having the bivariate Laplace distribution given by

fR(rl,r2) = 2 1r'/Ko[(2rTM-Ir)l2] (10.54)

where M is the covariance matrix for the two samples, IMI denotes its determinant, r_.TM-Ir is

equal to (r2 - 2prlr 2 + r2)/(1 - p2), p is the correlation coefficient between R1 and R2 and Ko(.)

is the modified Bessel function of the second kind of zero order. The resulting locally optimum

detector statistic is [75]

, 2 )1/2K 1 [(2r_. r_.)'/] T
TLoD(r1,r 2 ) = (rTMr Ko[(2rTM×r)_/2] T M-r (10.55)

where s = (s8 ,5 2 )T, STM-lr= (r,- pr2 )SI + (r 2 -- pri)s 2 and K, (.) is the modified Bessel function
of the second kind of first order. s, and S2 are the known signal levels. In this example we take

s1 = 1 and s2 = -1. Because of the complexity of TLOD(.), it is not possible to determine a
closed form expression for its probability density function.

In many applications in radar, thresholds have to be set to achieve desired false alarm proba-

bilities based on a sample size which is orders of magnitude less than 10/Pp. As will be pointed

out later, the statistic in equation (10.55) represents a worst case situation in the sense that our
simulations indicate that the variance of the test statistic is extremely large. To investigate the

reliability of the thresholds estimated based on extreme value theory with smaller sample sizes,

10,000 pairs of observations (r1 , r 2) were generated from the bivariate Laplace distribution given

in equation (10.54), with p = 0.90. The values of TLOD(rl, r2) were computed for each pair and

sorted in increasing order. Corresponding to a = 0.01, the largest 100 values of the underlying

statistic (the top one per cent) were selected to fit the Generalized Pareto Distribution. This

experiment was repeated 250 times. The thresl. corresponding to a certain false alarm prob-

ability PF of the distribution of the statistic -LoD(rj,r2) is estimated from equation (10.51)
as ýp, = x0 + 5[(i=.). - 1]/j where x0 is the 9 9 0 0th largest value of the statistic. Thresh-t 0.01/

olds were estimated for false alarm probabilities PF = 10 -k, k = 2,..., 7 for each repetition of

the experiment. Histograms of these threshold values are shown in figure 10.7, for the different

PFs. To give a better appreciation for the range of values, the bins are not necessarily of equal
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width. The histograms give an indication of the spread in the threshold values depending on

the particular samples collected. From the histograms corresponding to false alarm probabilities

of 10-1, 10- and 10' we can see that the threshold estimates obtained on the basis of even

one set of samples is likely to approximately yield the desired PF. Since the underlying distribu-

tion of TLOD(.) is unknown, one measure of the accuracy of the estimate ".*s the extent to which

most of the estimates fall in one bin of the histogram. Also, we can see that there is negligible

overlap between the estimated threshold values in the histograms for the three different PFs.

This supports the claim that the estimated threshold is likely to yield a false alarm probability

which is of the same order as the desired PF. There is a higher overlap in the thresholds of

the histograms for PF=10- 5 , 10-6 and 10-7. Also, there is much higher spread in the threthold

values estimated. Based on the excellent results obtained for the same choices of PFs in the

known cases of the previous section, these results are surprising. However, it is explained as

follows. The -f values of the GPD estimated for the different repetitions of this experiment lie in

the range 0.45 - 0.55. This represents an extremely heavy tailed distribution. From Table 10.1

we see that the Lognormal distribution, which is quite a heavy tailed distriLution, has 7=0.232.

The heavy tailed nature of the detector statistic can also be obselved by comparing the large

threshold values seen in the histograms with the corresponding thresholds of the Gausaian and

the Lognormal distributions. The variance of the GPD is given by

Var(X) = a -Y < 0.5
(Il--yl)( - 2 -y)

-= 00 Y ý> 0.5 (10.56)

Thus, the bivariate Laplace results in a very highly fluctuating statistic with an extremely large

variance. As such, it represents a 'worst case' situation for empirically determining the thresh-

old. A much larger sample size is needed to obtain reliable threshold estimates because of the

exceedingly large tail of the underlying distribution.

In general, an indication of how heavy the true tail may be for an unknown distribution is

given by the estimate of y for the GPD. When an extremely heavy tail ;s indicated, another

strategy for estimating the thresholds when PF is very small is to choose the median value of the

thresholds estimated when the experiment is repeated a specified number of times with 10,000

samples in each repetition. The choice of the median as the estimator ensures that very large

and very small values do not affect the results. For the present example, we chose to repeal the
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250 trials three times. By counting the number of estimates that fell into the bins centered at

20, 28 and 36 for PF=10-, 40, 50,70 and 90 for PF=10-6 and 100 and 150 for PF=10- 7, it was

found that 88 percent of the estimatej fell into these bins. Thus, even for this extremely large

tailed example, we believe that use of the GPD has allowed us to estimate useful values for the

thresholds with sample sizes much smaller than IO/PF.
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Chapter 11

Performance of the Locally Optimum

Detector for the Multivariate

Student-T Distribution

In radar problems involvirg weak signal applications, it is found that the large returns due to

clutter can lead to a small signal to disturbance ratio. The large returns from clutter result

when the density function of the clutter exhibits an extended tail behavior. Consequently, the

probability density function of the disturbance can no longer be modeled as Gaussian. The

significance of a non-Gaussian PDF with an extended tail is that many more large returns result

than would be the case for a Gaussian PDF having the same variance. Hence, there is a need to

be able to model non-Gaussian random processes.

The multivariate student-T distribution is a member of the class of joint PDFs arising from

Spherically Invariant Random Processes (SIRP). SIRPs are explained in detail in the earlier

chapters. When an SIRP is sampled at N instants in time, the resulting vector is said to be

spherically invariant. The theory of SIRPs offers a way to model the joint density function on

these N samples where the correlation between the individual random variables in the vector is

accounted for. With this approach locally optimum detector structures can be derived for non-

Gaussian disturbances without the need to assume that the random variables are statistically

independent. In this chapter we analyze the performance of the LOD when the background

disturbance consisting of clutter and noise can be modeled as having a multivariate student-T

distribution.
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11.1 The Multivariate Student-T Distribution
A convenient procedure for generating a multivariate student-T distribution is discussed in

this section. Let the random vector X have a multivariate Gaussian distribution with zero mean

and covariance matrix M. The zero mean assumption will not affect the generality of the results

that follow. The joint density function on the elements of X is given by

1 -( N /e

(2)IMI(11.1)

where the vector X has 2N elements from N inphase and N quadrature samples. Consider the

vector F = •X/v, where v is a nonnegative random variable statistically independent of X. Let
wTM-lw be denoted by the variable p. Then, the conditional density function of the vector WE

given v can be written as

__(w = 1N i/,v2N e=p (11.2)
(27r)NIMII/2

The unconditional density function on _W is given by

fw_(w__) = Jfw(wv)f•(u)dv (11.3)

where f 1,(v) is the probability density function of the random variable v. Because X and V are

statistically independent, it follows that

E(_W) = E(=) = E(X)E(v- 1 ) =0 (11.4)

"E( WE T ) = E(XX T )E(V- 2) = E(v-a2 )M. (11.5)

It can be seen from the above equation. that the level for the variance of the elements of the

vector W can be adjusted by appropriate choice of E(V- 2).

With respect to equation (11.3), let f,(v) be the generalized chi PDF given by

2 V20l- 1 e- aV cip•f
2 --( ) F.l (11.6)

From equation ( 11.6). E(v- 2) can be calculated. Specifically,

... oo v21lle-ah2 &3J fco p~3e-L~av•O'7

"E(V-2) = 00 2v- 2 2 () dv = ]0 2 r(e) d (11.,)
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Letting av'2 = x in the above equation we get

=:~~ 
~ cc-' = f°X,-2e--'dx r(P - 1)

_V2) x0 r(#)' = (/"- 1) '- - (11.8)

If we let a /3 - 1, then the generalized chi PDF in equation (11.6) is such that E(V- 2) = I

irrespective of the choice for the parameter /f. Then the generalized chi PDF takes the form

2M2Ve-(-)h 2 (/3 - 1)# /8 > 1. (11.9)"r(p)

In general, we can set the value of E(V- 2) to a desired constant C by choosing a = C(/8 - 1).

Integrating the conditional density function fw_(wlv) as given by equation (11.2), over the

PDF of the nonnegative random variable v, we obtain the multivariate student-T distribution.

The details are given below. Choosing a =/3 - 1 in equation (11.6) we can write

0w0&~ 1 2N 1 e 22 e3)a(/- 1)t3
Jf(w) ofo (27r)NIMI1/2 e 2 [- - (/)

(0/- 0 00 2v2N+2,0-1e-0'C-I1+P/2)dv. (11.10)

(2-7r) N I m 1/, r (,8T

Letting ( - 1 + p/2)V2 = y we get

fW.W.• -(-'8 _- 1)13 ° 0 Y N-t-6-1 e-V dy(27r)N[MII•-r(/) o (ft - 1 + p/2)N+.

(/P - IiFr(N +/8)
(21r)NIMI1/ 2r(p)(# - 1 + p/ 2 )N+f" (11.11)

The above expression is defined to be the 2N-dimensional multivariate student-T distribution

with parameters N and /. N represents the number of complex samples and / determines the

tail behavior of the multivariate density function.

For simulation purposes, the density function in equation (11.9) can be simulated as follows.

The first step is to generate a standard Gamma variate from the density function fy (y) = r .

The IMSL package was used to the generate standard Gamma variates. The next step is to divide

the geihera~ted random variable by the parameter / - 1. Let X = Y/(/ - 1). The density function

of X is .p(• _ • 1)#,T#-Ie-x(t"-1)
.fx(x) ()(11.12)
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The positive square root of 4- results in the desired density function. Let v = X i. Therefore

X = v�. Introducing the Jacobian of the transformation, the density function of v becomes

MV) 2v2a-'e-0-j)(•2  - 1)9 0 (11.13)

which is identical to that in equation (11.9).

11.2 The Locally Optimum Detector

The locally optimum detector for the multivariate student-t distribution can now be derived.

From equation (9.32) the locally optimum detector is given as

(11.i4)

Assuming the disturbance can be modeled by a multivariate student-T distribution, fD(_) is

given by equation (11.11), where p - rTM-'r. Since equation (11.14) is a ratio test and

all constants can be placed in the threshold which is determined by specifying a false alarm

probability, all multiplicative constants are ignored for convenience. Hence, we will be concerned

only with the terms containing the variable R. Excluding the constant term the numerator in

the ratio test is given by

90_ 5O7(P° - 1 + p/ 2 )N+l (11.15)

Applying the chain rule, the derivative with respect to 0 can be expressed as the derivative with

respect to p times the derivative of p with respect to 0. The derivative of p with respect to 0 at

0 = 0 can be derived as

_10 a (1(=- Pa)TM-'(r -- 0-))l2O = -2a-TM-lr. (11.16)

Therefore, the numerator in the ratio test, excluding the -onstant, is given by

0af(r = = (9 -- 1 +p/ 2 )-(N+0+1) x STM-'r. (11.17)
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From the above equation, the sufficient statistic for the locally optimum detector for the multi-

variate student-T distribution can be written as

TLOD(r.) = -1 + p/2' (11.18)

The above result for the LOD statistic is very significant. The numerator in equation (11.18) is

recognized as the Gaussian linear detector. This detector is a matched filter which maximizes

the signal-to-disturbance ratio whether or not the disturbance is Gaussian. In weak signal appli-

cations the signal to disturbance ratio will still be low after matched filtering. The denominator

of the LOD statistic is the nonlinear term in the statistic. The behavior of the nonlinearity is

such that it scales down large values of p and enhances small values of p. The nonlinearity is

plotted as a function of p in Fig. 11.1. This is reasonable because large values of radar returns

result in large p while small values of the returns yields small values of p. Because it is known

a priori that we are dealing with the weak signal problem, large returns cannot be due to the

signal. Consequently, the output of the matched filter is weighted by a small number. On the

other hand, the matched filter output is weighted by a large number when the return is small

and the contribution due to the signal, if present, car be detected.

11.3 Computer Simulation of Performance

The performance of the locally optimum detector in a multivariate student-T distributed

clutter is obtained through computer simulations for weak signal applications. For simulation

purposes a multivariate student-T distributed disturbance vector D and a transmitted signal

vector _$ have to be generated. The first step in generating the correlated multivariate student-T

distributed random variables is to generate a 2N-dimensional white Gaussian raridom vector.

Subroutine DRNNOA from the IMSL package is used to generate a white Gaussian vector of

desired dimension. Each element of the white Gaussian vector is divided by the random variable

generated from the density function in equation (11.9). This results in a white studeiit-T

distxibuted vector. The next step is to introduce correlation between the random variables. The

covariance matrix of the clutter process is assumed known with unit elements along the diagonal

To get the covariance matrix M of the disturbance we add a small number, determined by the

clutter to roise ratio, to the diagonal elements of the clutter covariance matrix. This serves to

limit the performance of the receiver even where the clutter power is negligible. In this simulation,

the clutter to noise ratio is taken to be 80 dB. Given the covariance matrix,
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Figure 11.1: Nonlinearity for the student-T distribution.
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a cholesky decomposition is carried out such that the matrix M = KKT where K is a lower

triangular matrix. Multiplying the matrix K and the white student-T distributed vector we

obtain a student-T distributed vector with the desired correlation between the random variables.

The autocorrelation of the clutter process is taken to be a geometric function in this problem.

Assuming radar returns from clutter cells to be highly correlated, as is the case with ground

clutter, the sample to sample correlation is taken as 0.95 in this problem. Specifically, the

sample autocorrelation function is chosen as

Rcc¢(n) = (0.95)" n = 0, I, ... ,N -1 (11.19)

where RCC(n) is the discrete time autocorrelation function of the clutter process. Using the above

function the elements of the covariance matrix of the disturbance can be filled appropriately.

The elements of the signal vector are chosen such that the n"h element S, = ej21fD(n-1)T, 7 =

1,2, ... , N. fD represents the Doppler frequency shift of the received signal and T represents the

time separation between sampling instants.

The detector in equation (11.18) is now simulated. A value of -" 1.5 for the multivariate

student-T distribution is chosen because this value results in a relatively long tail for the corre-

sponding marginal PDF of one element of the vector. By evaluating thresholds for specified false

alarm probabilities, the student-T distribution was seen to have heavier tails than the Gaus-

sian distribution for false alarm probabilities less than 10-i but smaller tails than the Gaussian
other% ise.

The threshclds corresponding to false alarm probabilities 10 -k; k = 1,2,3,4 are obtained

through the method of extreme value theory explained in Chapter 10. Once the threshold is set

the detection probabilities are obtained by simulating the LOD for received vectors consisting

of the sum of the signal and disturbance vectors for various signal-to-disturbance ratios. rhe

value of fD is chosen to be zero in this simulation. The number of trials in the Moute Carlo

simulation for each case is equal to 10,000. The performance of the LOD is compared to that of

the Gaussian detector for the same multivariate student-T distributed clutter. The test statistic

for the Gaussian detector is the same as the numerator of the LOD, which is sTM-'r. rhe

results are shown in Tables 11.1-11.14.

From the tables it can be seen that, when the false alarm probability is 10-1, the LOD and

the Gaussian receiver have comparable performances for the various signal to clutter ratios con-
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sidered. For lower false alarm probabilities, the LOD always outperforms the Gaussian receiver

except for the zero dB entries in Tables 11.1, 11.4, 11.7, 11.11 and 11,12. The difference is

especially significant for false alarm probabilities equal to 10- and 10'.

From our computer simulations we expect that the performance improvement of the LOD

over the linear Gaussian receiver depends on the shape of the tail disturbance PDF. The heavier

the tail of the disturbance PDF, the better is the expected improvement in performance. The

student-T distribution, while being heavier tailed than the Gaussian, is not as heavy tailed as

the K-distribution and Weibull distribution. In fact, the student-T distribution may not be a

likely candidate for modeling the radar disturbance. The student-T distribution was chosen as

the first distribution to be studied only because of the mathematical simplicity and well behaved

nature of its multivariate PDF. Nevertheless, the analysis done with the student-T distribution

confirms that the LOD outperforms the Gaussian receiver for weak signal applications.

11.4 Conclusions

It can be observed from the tables that the Gaussian receiver performance degrades abruptly for

false alarm probabilities less than or equal to 10-1 whereas the LOD shows a gentler degradation

in performance. Both the receivers show an improvement in performance as the number of

samples is increased. However, the LOD shows a dramatic improvement in performance when

the sample size is greater than 64. From Table 11.14, it can be seen that for SCR=0 dB and
PF = 10-4, the detection probability for the LOD is 0.3720 while that for the Gaussian receiver

is 0.0003. This represents an improvement factor in the vicinity of 3 orders of magnitude for the

LOD. Also, from Tables 11.3, 11.6, 11.9 and 11.13, we observe that when the Pp, is set to 10' the

LOD shows a performance improvement of two orders of magnitude compared to the Gaussian

receiver. For larger sample sizes eg. 64, 128 the detection probability of the LOD is in the tenths

for SCR=-1OdB and PF = 10-2, while for the Gaussian receiver it is in the hundredths. Overall,

when PF is less than or equal to 102, the Gaussian receiver requires a signal-to-clutter ratio

10-20 dB larger than that required by the LOD for the same values of P, and PD.

The LOD does not work well if the signal to clutter ratio is too large. The performance degrades

rapidly for signal to clutter ratios exceeding zero dB. The LOD is designed for detecting targets

when it is known that that the signal is weak. The aim of using a LOD is to obtain detection in

range-Doppler-azimuth cells where conventional space-time processing does not help in getting

acceptable performance. These cells are now ignored because it is felt that they are hopeless for
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target detection purposes. The nonlinearity present in the LOD plays the role of suppressing

large returns. However, if the SCR is high, the large returnR are more likely to be caused due

the signal than due to the clutter. Hence, the detection performance will drop off compared to

the Gaussian receiver. In general, when the SCR is relatively high (,0 dB) the likelihood ratio

test is the optimal test for target detection under a fixed false alarm constraint. When the signal

to clutter ratio becormes very close to zero, the LOD receiver will hardly show any detections

even though it would still outperform the Gaussian receiver. This is because the PDFs under

Ho and Ht are so close to each other that it is impossible to separate them without increasing

the sample size by orders of magnitude.

The concept of spherically invariant random processes and locally optimum detectors are

particularly relevant in the context of modern radar applications. When the radar scans a

vo!ume searching for targets there might be certairi regions in the volume where the clutter

returns are so strong that signal returns get blanked out. It is in these regions that we can

obtain detections with LODs. There is a need to monitor the environment so that we are able

to separate the clutter regions from volumes that are just limited by background noise. When

detections are limited by background noise alcne, LODs are inapplicable. In this research effort

work is beginning in the area of using artificial intelligence (Al) for monitoring the volume. Using

Al, clutter patches can be identified and the underlying multivariate PDF of the clutter returns

can be approximated using the library of SIRPs that have been developed. From the library of

LODs the LOD corresponding to the approximated SIRP can be used in clutter regions to obtain

detections if the target is present, where earlier it would not have been possible.
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____R LOD OR

o aB PD 03.047 0.8600
-10 dB PD 0.3220 0.2800
-20 dB PD 0.1611 0.1460
-30 dB PD 0.1175 0.1190

Table 11.1: Sample Size=16, PF = I0-1, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR
0 dB JPD 0.3761 0.1050

-10 dB j PD 0.0838 0.0190
-20 dB PD 0.0246 0.0120
-30 dB . PD 0.0141 0.0.0100

Table 11.2: Sample Size=-16, PF = 10-2, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR
0 dB PD 0.1604 0.0030

-10 dB PD 0.0198 0.0014
-20 dB PD 0.0027 0.0011
-30 dB PD 0.0012 0.00001

Table 11.3: Sample Size=16, Pp = I0', SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Recciver

SCR LOD- GR
0 dB PD 0.7607 0.9090

-10 dB PD 0.3608 0.3200
-20 dB PD 0.1704 0.1540
-30 dB PD 0.1202 0.0.1190

Table 11.4: Sample Size=32, PF = 101, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gauamian Receiver
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SCR LODI GR

0 dB PD 0.4573 0.1750
-10 dB PD 0.1052 0.0220
-20 dB PD 0.0255 0.0130
-30 dB PD 0.0145 0.0120

Table 11.5: Sample Size=32, Pp = 10-2, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gausian Receiver

SCR LOD GR
0 dB PD 0.2621 0.0035

-10 dB PD 0.0289 0.0015
-20 dB PD 0.0042 0.0012
-30 dB PD 0.0013 00001

Table 11.6: Sample Size=32, Fp = 10-3, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR
0 dB PD 0.8117 0.9510

-10 dB PD 0.4302 0.3790
-20 dB PD 0.1278 0.1590
-30 dB PD 0.1252 0.1195

Table 11.7: Sample Size=64, Pp = 10-1, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

S CR __ LOD GR
0 dB PD 10.5484 0.3000

-10 dB PD 0.1446 0.0230
-20 dB PD 0.0301 0.0120
-30 dB PD 0.0152 1 0.0010

Table 11.8: Sample Size=64, P.F = 10-2, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussean Receiver
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-CR LOD GR
0 dB -D 0.3843 0.004"8

-10 dB PD 0.0492 0.0016
-20 dB PD 0.0057 0.0012
-30 dB PD 0.0019 0.0001

Table 11.9: Sample Size=64, Pp = 10-3, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR
0 dB PD 0.2522 0.0002

-10dB PD 0.0202 0.0001
-20 dB PD 0.0018 0.0001
-30 dB PD 0.0005 0.0000

Table 11.10: Sample size=64, PF = 10-4, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR
0 dB PD 0.8517 0.9790

-10 dB PD 0.4987 0.4870
-20 dB PD 0.2080 0.1710
-30 dB PD 0.1314 0.1186
-40dB PD 0.1106 0.1059

Table 11.11: Sample Size=128, PF = 10-1, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR
0 dB PD 0.6511 0.7050

-10 dB PD 0.2190 0.0320
-20 dB PD 0.0445 0.0150
-30 dB PD 0.0198 0.0116
-40 dB PD 0.0147 0.0010

Table 11.12: Sample Size=128, Pp = 10-2, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver
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SCR LOD GR
0 dB PD 0.4777 0.0090

-10 dB PD 0.0869 0.0020
-20 dB PD 0.0098 0.0013
-30 dB PD 0.0037 0.0011
-40 dB PD 1 0.0021 1 0.0001

Table 11.13: Sample Size=128, PF 10-3, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD I GR
0 dB PD 0.3720 0.0003

-10 dB PD 0.0430 0.0002
-20 dB PD 0.0039 0.0001
-30 dB PD 0.0007 0.0001

L-_40dB PD 0.0003 0.0000

Table 11.14: Sample Size=128, PF 10-4, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver
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Appendix A

Properties of SIRVs

In this appendix we present some original proofs for properties of SIRPs stated in the literature.

A.1 Statistical Independence
An SSRV X = [XI, X 2, .. ', XN]' results in statistical independence of the Xii-= 1,n2,... e N

if and only if the SSRV is Gaussian.

Proof: Recall that the PDF of X can be expressed as2

fx(x) = khN[(x + x +... + N)T] = (27r)-fhN(/•XTX). (A.1)

If the components of X are statistically independent, then the PDF given by eq (A. 1) must factor
into the product of the marginal PDFs of the components of X. It then follows that

N
h [(x2 + x2 +... + x2j)I] = lg(x,). (A.2)

Letting r - (x2 + x2 +... + x2)½ and differentiating both sides of eq (A.2) with respect to xi,

results in
N

r -" g(xj)g'(x,). (A.3)

j=1
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Dividing both sides of eq (A.3) by xihjv(r) results in

h(r) (A.4)
rhN(r) xg(x)(.

Equality holds in eq (A.4) if and only if the left and right sides of eq (A.4) are equal to the same

constant. Denoting this constant by -A, we have

hN(r) = -A. (A.5)rhN(r)

Integrating both sides of eq (A.5) with respect to r gives

hN(r) = aexp(-T \r (A.6)
r2

where a is the constant of integration. Hence,
I~ ~~~~~ +...x + X2+..+•)•

hN[(X aexp-(x + X +... + xN)] (A.7)

Substitution of eq (A.7) in eq (A.1)clearly results in the Gaussian PDF. The constraint of unity

volume under the PDF results in a = Af.

In order to prove the sufficient part of the property, we start with the marginal PDFs of the

c o m p o n e n ts o f X g iv e n b y 2 7r i . ( A .8

fx,(xd = (T)-7 exp(--y'2.(A

Under the assumption of statistical independence, we obtain the PDF of X by taking the product

of the marginal PDFs of its components as

fx(x) = (T)- eXP(-i X;)" (A.9)
i=1

Clearly the PDF given by eq (A.9) is of the form of eq (A.1). Hence, the sufficient part of the

property follows.

An alternate proof of this property can be obtained by using the representation theorem. The

representation theorem allows us to express the SSRV X as a product of a GausSian random

vector Z having zero mean and identity covariance matrix and a non-negative random variable
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S. More precisely, we can write

X-. ZS. (A.1O)

The components of X can be statistically independent if and only if S is a constant. When S is

a constant, X is a Gaussian SSRV. As is often the case, the representation theorem provides a

simplified approach for determining properties of SIRVs.

A.2 Spherically Symmetric Characteristic function

In this section, we prove that the characteristic function of an SSRV is spherically symmetric.

Proof: We consider the SSRV X = [X1 , X2, ... ,XN]T. From the representation theorem,

we can write X = ZS where Z is a Gaussian random vector having zero mean and identity

covariance matrix and S is a non-negative random variable with PDF fs(s). The characteristic

function of X given by

Ox(w) = E[exp(jwT X)] (A.11)

where w = [wI, W2,... ,w,]T can be expressed as

"-x(w) = Es[0Xjs=8 (w)] (A.12)

where 0xjs=,(w) = E[exp(jwT Zs)]. However,

E[exp(jwT Zs)] =
i--1

Using eq (A.13) in eq (A.12) results in

00 Sq2 N

fX(w) = j exp(-y •w?)fs(s)ds. (A.14)
i=l

The characteristic function given by eq (A.14) can be expressed as a function of x/wZT. Hence

it is spherically symmetric.

A.3 Relationship Between Higher Order and Lower Order SIRV
PDFs

In this section we examine the relationship between the higher order and lower order SIRV

PDFs. More precisely we consider an SIRV Y = [Y1 , Y2, ... , YN]T having mean vector it, covari-
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ance matrix E and characteristic PDF fs(s). The PDF of Y is given by

fy(y) = (27r)" 14t i~-hN(p) (A.15)

where p = (y - )T'E-l(y - j) and

hN(P) = J 8Nexp(- P )fs)dq. (A. 16)

The vector Y can be partitioned u Y = [YIT Y 2T]T wheze Yj =[11, Y 2, ... Ym]T and

Y2 = [Yn+I, V;,+2, ... YNIT. Let pI and A2 denote the mean vectors of Yj and Y2 respectively,

and EI and E 2 denote the corresponding covariance matrices. We need to obtain the PDF of

Y1 from the PDF of Y by integrating out over the N - m random variables (i.e., the components

of Y2). Let p, = (y, -_ p)TE Il(yl - Pl) and p2 = (Y2 -- A2 )T21L(Y2 - P,2). The PDF of Y1

is given by

fyl(yl)=(2 ) T !'e( )(dY (A.17)

From [381 (p17 eq.8, p18 eq.11) we have

(27r)-fI•--i e-xp(--L)dY2 = (21r)-?jElj-JSN-,CXp(_-P) (A.18)

f 00 2s22S2

Using eq (A.18) in eq (A.17) gives

001fy, (yi) = (27r) S- exp(- -1)fs(a)ds. (A.19)

The PDF of Y 1 can be expressed as

fy1 (yj) = (27r)-TlJI j-ihm(pi) (A.20)

where

hm(pi) = S-M exp(- I-)fs(s)ds. (A.21)

Clearly, hm(pl) given by eq (A.21) can be obtained from eq (A.16) by simply replacing N by m

and p by pi. To determine the PDF of Y 1 , all that is needed is the specification of its mean

vector and covariance matrix. As a special case, when m = 1, eq (A.19) gives us the first order

SIRV PDF. Therefore, to obtain the first order SIRV PDF of the it1 component of Y starting
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from the N"h order SIRV PDF, we simply use eq (A.19) with m = 1, E1 = ai and p, = 2
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Appendix B

Computer Generation of SIRVs Using

the Rejection Method

B.1 Rejection Method

We present a proof of the rejection procedure [42] used for generating the norm R of the

white SIRV X in Chapter 4. In many instances, it is likely that the PDF of a random variable is

known explicitly, but its cumulative distribution function is either unkrown or has a complicated

functional form. Consequently, the cumulative distribution function cannot be inverted easily.

Therefore, the use of the inverse distribution function for generating the random variable does

not offer a practical solution for this problem. Hence, it is necessary to use a different scheme for

generating the random variable. We consider the problem of generating a sequence of random

numbers with PDF fR(r) of a random variable R, in terms of a random number sequence with

PDF fu, (ul) of a random variable U1. The underlying assumption is that the random number

sequence from the PDF of U, can be readily genera.ýed.

The rejection method used in Chapter 4 is based on the relative frequency interpretation of

the conditional PDF
fu,(ulJ)du1 = P{u, < U !5 u + du,M} (B.1)

fui~iIM~ui -P(M)

of a random variable U, given the event .M. M is expressed in terms of the random variable U1

and another random variable U2 and is chosen so that the resulting conditional PDF fu, (u IIM)

equals fR(r.). The desired sequence is generated by setting R = U, given that the event M has

occurred and rejecting U1 otherwise. The problem has a solution only if the domains of r and u,

are such that fR(r) = 0 in every interval for which fu, (ul) = 0. Therefore, we can assume that
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the ratio fuI • is bounded from below by some positive constant a:

fu,(u1) >a> 0 for every ul (B.2)
fR(UA) -

B.2 Rejection Theorem

It is desired to generate a random variable R with PDF fR(r). Let U1 be any random variable

with PDF fu, (ul) such that fuý (ul) = 0 whenever fR(r) = 0. Let U2 be e, uniformly distributed

random variable on the interval (0,1). If the random variables UJ and U2 are statistically inde-

peDdent and

M = {U2 _ g(U1 )} (B.3)

where
g(ul) a Af(U) < 1 (B.4)

fu, (u) -

then

fu (u1IM) = fR(ul). (B.5)

Proof: The joint PDF of the random variables U1 and U2 can be written as fu 1 ,u2(U1,U 2) =

fu 1 (ul)fU2 (u2), since U1 and U2 are statistically independent. Hence, we have

P(M) =/10 [("') fO j(u1)fU,(u2)du~du2. (B.6)

However, since U2 is uniformly distributed in the interval (0, 1) and g(ul) < 1,

-j g(u") fu2 (u 2)du 2 = g(u1 ). (B.7)

Using eq (B.7) in eq (B.6) gives

P(M/t) f 00g(ul)fu, (ul)dul. (B.8)

However, g(ul) = aj-BJy. Therefore, we have

P(M) = af fR(ul)dul = a. (B.9)
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We can express the numerator of eq (B.1) as

P{sul < U, 5 ul + dul,M} -= io NO fh(u1)fUa(u 2)duldu2 = ,q(ui)fu1(u1)dui = afR(ul)dul.

(B.10)
Using eqs (B.9) and (B.10) in eq (B.1) results in eq (B.5).

Thus, we have the following algorithm for generating the sequence of random numbers from

the PDF of R.

1. Generate U1 and U2.

2. If U2 < a 1u, then U, = R1u1 (U0)

3. Otherwise reject U1.

With reference to the generation of the norm R in Chapter 4, U, and U2 were uniformly
distributed random variables. Let c denote the maximum value of the PDF of R and b denote a
finite range for the PDF of R such that the area under the curve of the PDF is close to unity.

U, is assumed to be uniformly distributed in the interval (0, b). Clearly, iR(uL) > 9. Hence,AR(ul) -
bcfu()J . < 1. Therefore, a - •. Step 2 above becomes: If U2 5 < UJ= &C, then U, = R.bcfu, (ul) -- -- bcfu, (ul) =

This can be rewritten as: If cU2 < fR(ul), then UI = R. For ease of implementation, this latter

form is used in conjunction with a uniform random variable U2 that is uniformly distributed over
the interval (0, c). This is the procedure followed in Chapter 4.

The method used in Chapter 4 becomes inefficient if U, is rejected frequently in step 3, resulting
in the necessity to generate the two uniformly distributed random variables of step 1 an inordinate

number of times. This problem can be overcome by using for U, a PDF which bounds the PDF
of 0R and satisfies the conditions stated in section B.1 and in the rejection theorem. Then a

random variable from this PDF is used in step 1 instead of the uniform random variable U1.

A second drawback of using a uniformly distributed random variable U, is that it may not be
possible to efficiently generate SIRVs of length greater than 8. This is due to the fact that, the
PDF of R depends on N. Consequently, the uniform distribution for U, may not satisfactorily

bound the PDF of the norm R for all N. rhis drawback can be overcome by choosing a diffeient

PDF for U, for each choice of N, such that the conditions stated in section B.1 and in the
rejection theorem are satisfied. This method would require the use of an exhaustive table which

tabulates the appropriate PDF of U, for each desired value of N.
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Finally, it is pointed out that by using a composite function for the PDF of U1. it is possible

to improve the simulation procedure in terms of being able to generate random numbers from

the body and the tail of the PDF of R. These issues are suitable topics for future investigation

as an extension of this work.
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Appendix C

0.1 Limiting Forms for the Largest Order Statistic

Let X1 < X 2 < ... < X, be the ordered statistics of n random variables having a common

distribution function F(x). Assuming that the trials of drawing the random variables from the

distribution function F(x) are independent, the distribution function of the largest order statistic

X,n is given by

P(X,•<_x) = P(X<_z,X 2 _x,...,Xxn<_)

= Fn(x). (0.1)

When F is continuous but unknown, an asymptotic theory is developed for F in the range 0+ to

1. [68J. It is shown that positive sequences {an} and {bn} exist such that

lim p(Xn - bn < x) = lim P(X, < anx + bn) -+ A(x) (C.2)n--oo a, n'--#w

or equivalently, by means of equation (C.1), that

lim F"(anx + bn) -- A(x). (C.9)

Let n = md in equation (C.3). d is a fixed positive constant so that as n -+ oo, m -4 oo. Using

the fact that n = md, we can write

lim Ftmd(andX + bind) = lim F'n(anx + bn) - A(x). (C.4)

It is also true that

lim [Fm (ax + bmn)] = lim Fmd(anx + bin) Ad(x). (C.5)
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If equations (C.4) and (C.5) hold, then from a theorem of 11intchin [76], there exist numbers

Ad > 0 and Bd > 0 such that

A d(AdX + Bd) = A(x) (C.6)

for all integer values of d.

Solution of the above functional equation yields all the possible limiting forms for the distribu.-

tion function F"(x). The constant Ad may or may not be unity. If it is unity, then the functional

equation to be solved is given by

Ad(x + Bd) = A(x). (C.7)

On the other hand, if Ad is not unity, Lhe form of equation ('.6) stands and there exists a value

XOd = Bd/(I - Ad) such that

Ad(Xod) = A(Xod). (C.8)

Constraining the solution to the above equation to be real and nonnegative, the solution is either

A = 0 or 1. However, because A(x) is a distribution function the value of A can be 0 only if Xod

i6 the lower endpoint at which A(xod) = 0+ and A caIn be 1 only if Xoad is the upper end at which

A(Xod) = 1_. Since Ad and Bd are assumed to be finite, XOd muat also be finite. Consequently,

there is no loss in generality by assuming that the endpoint of interest is located at the origin

(i.e., Xod = 0). When Ad $ 1, note that Xod = 0 implies Bd = 0. As a result, the solutiois for

equation (C.6) fall irnto three cases which are given below.

1) Ad(x+Bd)=A(x) Ad=1 ((C.9)

2) Ad(Adx) = A(x) Ad # 1 F = 0 when x =0 (c.10)

3) Ad(Adx) = A(x) Ad 0 1 F = 1 when x = 0 (c.11)

C.1.1 Case 1

Case (1) of equation (C.9) is solved as follows. Taking the logarithm, we have

log A(x) = d log A(x + Bd). (C.12)

Multiplying through by a minus sign and taking the logarithm of both sides, we obtain

log[-log A(x)] = log d + log[-log A(x + Bd)]. (0.13)
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"For simplicity, D.t

.q(x) = log[-log A(x)). (C.14)

Then equation (C013) becomes

g(x) = log d + g(x + Bd). (C.15)

Equivalently,

g(z - Bd) = log d + g(x) (C.16)

or

g(x) = g(x - Bd) - log d. (C.17)

Adding equations (C.15) and (C.17), we obtain

g(x + Bd) + g(x - B3,) = 2g(x). (C. 18)

The above equation is valid for all x if and only if g(x) is linear in x. Specifically, let

g(x) = kx + j (C.19)

where j and k are constants. Then

g(x +Bd) = k(x+Bd) +j =g(x) -logd= kx+j -log d. (C.20)

It follows that

kBd = -log d or k log d1)
Bd

Substituting equation (C.21) in equation (C.19), we see that

g(x) + x log d (.22)-- a -=j" C.2

Using equation (C.14), this result becomes

x log dlog[-log A(x)] + Bd -- j (C.23)
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Thus, we have

log[-log A(x)] x log d +. (C.24)Bd+J"(.4

Hence, for case (1) of equation (C.9) to hold, log[-log A(x)] must be linear in x.

We now solve for the sequence {Bd}. For this purpose, let d = pq where p and q are both

integers. Note that

API(x + Bpq) = A(x). (C.25)

From the above equation we get

A(x + B,,) = Ap(X)

= [A•(x)],' = [A(x + Bp]q

= Aq(x+Bp)=A((x+Bp)+Bq)=A(x+B,,+Bq). (C.26)

Equation (C.26) implies that

Bpq =Bp + Bq. (C.27)

We now determine the functional dependence of the sequence {Bd} on the subscript d. To

emphasize this functional dependence, we rewrite equation (C.27) as

B(pq) = B(p) + B(q). (C.28)

From the above equation, it is clear that the functional dependence is logarithmic. Thus, the

solution for Bd is given by

B(d) = Bd = log d (C.29)

Substituting equation (C.29) into equation (C.24) yields

log[-log A(x)] = -x + j (C.30)

where j plays the role of a location parameter. Hence, without loss of generality, j is chosen to

be zero. The above equation then simplifies to

log[-log A(x)] = -x. (C.31)
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Solution for A(x) results in

A(x) = exp(-e- ). (C.32)

Equation (C.32) is the solution of equation (C.9) for case 1.

C.1.2 Cases 2 and 3

The solutions to Cases (2) and (3) of equation (C.10) and (C.11) are now derived. In both

cases we have

Ad(Adx) = A(x). (C.33)

From equation (C.33) we get

log A(x) = d log A(Adx). (C.34)

Multiplying through by a minus sign and taking the logarithm of both sides, we obtain

log[-log A(x)] = log d + log[-log A(Adx)I. (C.35)

As in case 1, let

g(x) = log[-log A(x)]. (C.36)

Then equation (C.35) becomes

g(x) - log d + g(Adx). (C.37)

Alternatively,

g(x) = log d + g(x) (C.38)

or equivalently,

g(x) = -log d + g( ). (C.39)

Adding equations (C.37) and (C.39) results in

g(Adx) + g(xA) = 2g(x). (C.40)

The solution to the above equation is

g(x) = ±k log x for x > 0 (C.41)
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and

g(x) = ±k log (-x) for x < 0 (C.42)

where k is a positive constant. Use of equation (C.36) in equations (C.41) and (C.42) yields

log[-log A(x)] = ±k log x for x > 0 (C.43)

log[-log A(x)] = ±k log (-x) for x < 0. (C.44)

For Case 2, A = 0 when x = 0. This implies x = 0 is the lower end point of A(x). Hence, A(x)

is nonzero for x > 0. Therefore, our solution is given by equation (C.43) where we must choose

the sign in front of k to be negative. Then

log[-log A(x)] = -k log x x > 0 (C.45)

which results in

A(x) = exp(-x-k) x > 0. (C.46)

For case 3, A = 1 when x = 0. This implies that x = 0 is the upper endpoint of A(x). Hence,

A(x) is nonzero for x < 0. Consequently, the solution is given by equation (C.44) where we

choose the sign in front of k to be positive. Then

log[-log A(x)] = k log(-x) x < 0 (C.47)

resulting in

A(x) = exp(-(-x)k) x < 0. (C.48)

Thus, the three possible limiting forms for the distribution A(x) that arise as solutions to

equation 1 are given as follows:

1) A(x) = exp(-e==) (C.49)

2) A(x) = exp(-x-k) x > 0, k> 0 (C.50)

3) A(x) = exp(-(-x)k) x < O, k > O. (C.51)
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C.2 Tails of Probability Density Functions

Equations (C.49-C.51) represent the the three possible limiting formi of the distribution func-

tion for almost all smooth and continuous probability density functions. By differentiating the

three functions, we obtain the three possible limiting forms for the probability density functions

themselves.

C.2.1 Case 1

The derivative of A(x) is given by

H(x) = d A(x) = exp(-e-').(-e--)(-l) = e--exp(-e-') = exp(-x - e-f). (C.52)

In our application we are interested in the right tail of the probability density function. Since

we have to set thresholds corresponding to small false alarm probabilities, the thresholds will be

in the right tail of the probability density function. When x is very large, x > e-z. Therefore,

equation (C.52) can be simplified to obtain the PDF of the tail as

H(x) = e-' x large. (C.53)

C.2.2 Case 2

The derivative of A(x) is given by

H(x) = d- A(x) = exp(-x-k).(kxkl)

= k exp(-x-k)e(-k-l)log x) = k exp(-x-k - (k + 1)log x). (C.54)

When x is very large log x > x-k. Therefore, equation (C.54) can be simplified to obtain the

PDF of the tail as

H(x) = ke-(k+l)log x - kx-(k+l) x > O,x large k > 0. (C.55)

C.2.3 Case 3

The derivative of A(x) for this case is given by

Hg(x) = d A(x) = exp(-(-X)k).(k(-X)k-1)

= k exp(-(-x)k)e(k-l)lo° •-• = k exp(-(-x)k + (k- 1)log ,c). (C.56)
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When -x is very large, (-x)" > log x. Therefore, equation (C.56) can be simplified to obtain

the PDF of the tail as

H(x) = ke-(-x)" x <0, -x large k > 0. (C.57)

A basic assumption in the above development is that successive trials are independent. This led

to equation (C.1). In practice, as n becomes large, it may be difficult to ensure the independence

of successive trials. To the extent that the assumption holds, the results in equations (C.49-C.51)

are valid.

C.3 PDF of the rnh Ordered Statistic

Suppose that the ordered samples X, _ X2 _< ... _ X. are drawn from the distribution function

F(x). Let us further assume that the trials used to draw the samples from the distribution are

"independent. Consioer the rth ordered statistic Xr. Recall that P(X, :_ x) is the distribution

function of Xr. This, in turn, is the probability that at least r of the Xjs are less than or equal

to x. Treating this as a Binomial problem, the distribution function is

Fxr(x) = P(XrX)> !(5 -n )!F'(x)[1 - F(x)]"-' (C.58)

where the ith term in the summation is the binomial probability that exactly i of X 1, X 2, ... , Xn

are less than or equal to x. Using integration by parts, it can be shown that equation (C.58)

can be represented in terms of integral

() n! F() tr-1(1 _ t)"-dt. (C.59)
(r- 1)!(n - r)!

The probability density function of the rth ordered statistic is the derivativ•e of Fx,(x) and is

given by

fx,(X) = dFx(x) = d-- )!- - t))ddt

n! -F________-F(x)]nrf(a) (C-60)
(r - 1)!(n - r)!

where f(x) = dF(x). Equation (C.60) represents the general form of the PDF of the rt' ordered

statistic. If F(x) is known, then the mean and the variance of the r th ordered statistic can be
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calculated, The expected value of Xr is given by

n!~ ~ p. F-(.[ (X)]n-,f (x)dx. (C.61)Ex)=(r - I)I(n -- r)! .C F

An alternate form for the expected value of X, can be obtained by letting u = F(x). Therefore,

x = F-'(u). The infinite limits of the integral in the above equation then becomes finite after

the transformation. The transformed integral is

E(X' n! F-'(u)u"-'(1 - u)"du. (C.6)
= (r - 1(-1 - r)!Fo

The variance of the r" ordered statistic is expressed as

Var(X7 ) = E[(X, - E(X,))'] = E(X,) - E'(X.). (C..63)

Making use of equation (C.60), E(X,2) can be written as follows.

E(Xr)n! 0 2F-'(x)[1 - F(x)]n-,7 f(x)dx. (C.64)r -•) (•_Fr)l(X )

An alternate form for the expected value of X. can be obtained by again letting u = F(x). We

then get

E(.X) n ][F-'(u)I2 ur-I(l - u)n-,du. (C.65)E(X) =(r 1 )! (n - r)!o

The variance of Xr cazu be calculated from equations (C.62) and (C.65) when F-1 (u) is known.

253



Bibliography

[1] L. E. Brennan and 1. S. Reed. Theory of adaptive radar. IEEE Trans.

on Aerospace and Electronic Systems, AES-9:pp.237-252, 1973.

(2] I.S. Reed, J.D. Mallett, and L.E. Brennan. Rapid convergence rate in

adaptive arrays. IEEE Trans. on Aerospace and Electronic Systems,

AES-10:pp.853-863, 1974.

[3] E.J. Kelly. An adaptive detection algorithm. IEEE Trans. on Aerospace

and Electronic Systems, AES-22:pp. 115-127, 1986.

[4] C. G. Khatri and C. R. Rao. Effects of estimated noise covariance matrix

in optimum signal detection. IEEE Trans. on Acoust., Speech, Signal

Processing, ASSP-35:pp.671-679, 1987.

"[5] L. Cai and H. Wang. On adaptive filtering with the cfar feature and

its performance sensitivity to non-gaussian interference. Proceedings of

the 24th Annual conference on Information Sciences and Systems, pages

pp.558-563, 1990.

[6] L. Cai and 11. Wang. Performance comparisons of ',he modifieri smi

and glr algorithms. IEEE Trans. on Aerospace and Electronic Systems,

AES-27, 1991.

[7] H. Wang and L. Cai. On adaptive implementation of optimum mti in

severely nonhomogeneous environments. Proc. IEEE Int. Radar Con-

ference, pages pp.351-355, 1990.

254



[8] H. Wang and L. Cai. A localized adaptive mtd processor. IEEE Trans.

on Aerospace and Electronic Systems, AES-27, 1991.

[9] R. N. Adams, L. L. Horowitz, and K. D. Senne. Adaptive main-beam

nulling for narrow beam antenna arrays. IEEE Trans. on Aerospace and

Electronic Systems, AES-16:pp.509-516, 1980.

[10] R. A. Monzingo and T. W. Miller. Introduction to Adaptive Arrays.

Wiley, New York, 1980.

[11] J. E. Hudson. Adaptive Array Principles. Peter Peregrinus, New York,

1981.

[12] H. Wang and L. Cai. On adaptive multiband signal detection with the

glr algorithm. IEEE Trans. on Aerospace and Electronic Systems, AES-

27,1991.

[13] H. Wang et. al. Cfar performance of adaptive spatial-temporal proces-

sors. Technical report, Rome Laboratory, 1991.

[141 Sekine M., Musha T., Tomita Y., Hagisawa T., Irabu T., and Kiuchi

E. On Weibull Distributed Weather Clutter. IEEE Trans. on Aerospace

and Electronic Systems, AES-15:pp.824--828, 1979.

[15] Jakeman E. and Pusey P.N. A model for non-Rayleigh Sea Echo. IEEE

Trans. on Antennas and Propagation, AP-24:pp.806-814, 1976.

[16] Watts S. and Ward K.D. Spatial Correlation in K-distributed Sea Clut-

ter. IEE Proc.F, Commun., Radar, & Signal Process., 134, (6):pp.526-

532, 1987.

[171 Hawkes C.W. and Haykin S.S. Modeling of Clutter for Coherent Pulsed

Radar. IEEE Trans. on Information Theory, IT-21:pp.703-707, 1975.

[18] Farina A., Russo A., and Studer F.A. Coherent Radar Detection in

Log-normal Clutter. 1EE Proc.F, Commrun., Radar, & Signal Process.,

133, (1):pp.39-54, 1986.

255



[19] Conte E. and Longo M. On a Coherent Model For Log-normal Clutter.

IEE Proc.F, Commin., Radar, &J Signal Process., 134, (2):pp.198-201,

1987.

[20] Watts S. Radar Detection Prediction in K-distributed Sea Clutter and

Thermal Noise. IEEE Trans. on Aerospace and Electronic Systems,

AES-23:pp.40-45, 1987.

[21] Gang Li and Kai-Bor Yu. Modeling and Simulation of Coherent

Weibull Clutter. IEE Proc.F, Commun., Radar, 8 Signal Process., 136,

(1):pp. 2-1 2 , 1989.

[22] Jakeman E. On the Statistics of K-distributed Noise. J. Phzys. A.,

13:pp.31-48, 1980.

[23] Szajnowski W.J. The Generation of Correlated Weibull Clutter for Sig-

nal Detection Problems. IEEE Trans. on Aerospace and Electronic Sys-

tems, AES-13:pp.536-540, 1977.

[24] Peebles P. The Generation of Correlated Log Normal Clutter for Radar

Simulation. IEEE Trans. on Aerospace and Electronic Systems, AES-

7:pp.1215-1217, 1971.

[25] Farina A., Russo A., Scannapieco F., and Barbarossa S. Theory of Radar

Detection in Coherent Weibuh Clutter. IEE Proc.F, Commun., Radar,

& Signal Process., 134, (2):pp.174-190, 1987.

[26] Conte E., Galati G., and Longo M. Exogenous Modeling of Non-

Gaussian Clutter. J. IERE, 57, (4 ):pp.151--155, 1987.

[27] Kingman J.F.C. Random Walks with Spherical Symmetry. Acta Math.,

109:pp.11-53, 1963.

[28] Yao K. A Representation Theorem and Its Applications to Spherically

Invariant Random Processes. IEEE Trans. on Information Theory, IT-

19:pp.600-608, 1973.

256



[29] Goldman J. Detection in the Presence of Spherically Symmetric Random

Vectors. IEEE Trans. on Information Theory, IT-22:pp.52-58, 1976.

[30] Brehm H. Description of Spherically Invariant Random Processes by

Means of G-functions. Springer Lecture Notes, 969:pp.39-73, 1982.

[31] Brehm H. and Stammler W. Description and Generation of Spherically

Invariant Speech-Model Signals. Signal Process., 12, (2):pp.119-141,

1987.

[32] Conte E. and Longo M. Characterization of Radar Clutter as a Spher-

ictlly Invariant Random Process. IEE Pror.F, Commun., Radar,

Signal Process., 134, (2):pp.191-197, 1987.

[33] Conte E., Longo M., and Lops M. Modelling and Simulation of non-

Rayleigh Radar Clutter. IEE Proc.F, Commun., Radar, & Signal Pro-

cess., 138, (2):pp.121-130, 1991.

[34] Rangaswamy M., Weiner D.D., and Ozturk A. Spherically Invariant

Random Processes for Modeling and Distribution Identification of Non-

Gaussian Random Vectors. Accepted for publication in IEEE-AES

trans.

[35] Rangaswamy M., Weirner D.D., and Ozturk A. Computer Generation of

Correlated Non-Gaussian Clutter for Radar Signal Detection. Accepted

for publication in IEEE-AES trans.

[36] Kingman J.F.C. On Random sequences with Spherical Symmetry.

Biometrika, 59:pp.492-494, 1972.

[37] Johnson M.E. Multivariate Statistical Simulation. John Wiley and sons,

New York, 1987.

[38] Miller K.S. Multidimensional Gaussian Distributions. Wiley, New York,

1964.

257



.== i m •-- -

[39] Blake !.F. and Thomas J.B. On a Class of Processes Arising in Linear

Estimation Th,•ry. IEEE Tkans. on Information Theory, IT-14:pp.12-

16, 1968.

[40] M. Abraraowitz and I. Stegun. Handbook of Mathematical Ftmctions.

Dover Fublications Inc., New York, 1972.

[41] Chu K.C. Estimation and Decision for Linear Systems with Ellip-

tical Random Processes. IEEE Trans. on Automatic Control, AC-

18:pp.499-505, 1973.

[42] Papoulis A. Probability, Random Variables and Stochastic Processes.

McGraw-Hill, New York, 1984.

[43] Frame J.S. Matrix Functions and Application• Part-l-Matrix

Operations and Generaliz•.d Inverses. IEEE Spectru.'•, 3:pp.212,

1964.

[44] Picinbono B. Spherically Invariant and Compound Gaussian

Stochastic Processes. IEEE Trans. on Information Theory, IT-

16:pp.77-79, 1970.

[45] Gradshteyn I.S. and Ryzhik I.M. Table of Integrals, Series and

Products. Academic Press Inc., New York, 1980.

[46] Erdelyi A., Magnu• W., and Oberhettinger F. Tables of Integral

STransforms• McGraw-Hill, New York, 1954.

[47] Modestino J.W. and Ningo A.Y. Detection of Weak Signals

in Narrowband Non-Gaussian Noise. IEEE Trans. on Information

Theory, IT-25:pp.S92--600, 1979.

[48] Kassam S.A. Signal Detection in Non-Gaussian Noise. Springer-

Verlag, New York, 1988.

[49] B.L. Bratley, P.and Fox and L.E. Schrage. A Gydde to Simulation.

Springer-Verlag, New York, 1987.

258



[50] Ozturk A. A New Method For Univariate and Multivari-
ate Distribution Identification. Submitted for publication to
JASA.

[51] Koziol J.A. A class of Invariant Procedures for Assessing Mul-
tivariate Normality. Biometrika, 69:pp.423-427, 1982.

[52] Ozturk A. and Romeu J.L. A New Method For Asseussing Mul-
tivariate Normality With Graphical Applications. Accepted for
Publication in Commun. in Statistics.

[53] Johnson N.L and Kotz S. Distributions in Statistics.Continuou8

Multivariate Distributions. John Wiley and sons, New York, 1976.

[54] Martinez A.B., Swaszek P.F., and Thomas J.B. Locally Opti-
mal Detection in Multiv'ariate Non-Gaussian Noise. IEEE Trans.

on Information Theory, IT-30:pp.815-822, 1984.

[55] Gnanadesikan R. Methods of Statistical Data Analysis of Multivariate

Observations. John Wiley and sons, New York, 1977.

[56] Mardia K.V. Test of Univariate and Multivariate Normality.
Handbook of Statistics, l:pp.279-320, 1980.

[57] Rangaswamy M., Weiner D.D., and Ozturk A. Simulation of
Correlated Non-Gaussian Interference for Radar Signal Detec-
tion. In Proceedings of twentyfifth Asilomar Conference on Signals,

Systems and Computers, Pacific Grove, CA, 1991.

[58] Fisher R.A. The Use of Multiple Measurements in Taxonomic
Problems. Ann. Eugenics, 7:pp. 179-188, 1936.

[59] Fang K.T. and Anderson T.W. Statistical Inference in Ellipti-

cally Contoured and Related Distributions. Allerton Press ;nc., New
York, 1990.

259



[60] J. Neyman and E. S. Pearson. Contributions to the theory of

testing statistical hypothesis. Annals of Mathematics, pages pp.

25-138, 1930.

[61] J. Neyman and E. S. Pearson. Sufficient statistics and uni-

formly most powerful tests of statistical hypothesis. Annals of

Ma.1hernatics, pages pp. 113-137, 1930.

[62] Middleton D. Canonically optimum threshold detection. Mem-

orandum RM-4687-PR, 1965.

[63] Capon J. On the asymptotic efficiency of locally optimum

detectors. IRE Transactions on Information Theory, pages pp. 67-

71, 1961.

[64] J. H. Miller and J. Thomas. Detectors for discrete time signals

in non-gaussian noise. IEEE Trans. on Information Theory, IT-18,

No. 2:pp. 241-250, 1972.

[65] E. Conte, L. Izzo, M. Longo, and L. Paura. Asymptotically

optimum radar detectors in non-rayleigh clutter. 1EE Proc.F,

Commun., Radar, & Signal Process., 134, No. 7 :pp. 667-672, 1987.

[66] B. B. Shishkov and S. I. Penev. Asymptotically optimum al-

gorithms for detection of signals in a background of correlated

interference and white noise. Radiotekhnika i elektronika, 7:pp.

1419-1424, 1988.

[67] D. D. Boos. Using extreme value theory to estimate large

samples. Technometrics, 20:pp. 33-39, 1984.

[68] Editor: Tiago de Oliviera. Statistical Extremes and Applications.

D. Reidel Publishing Co., Boston, 1984.

[69] A. C. Davison and R. L. Smith. Models for exceedances over

high thrcsholds. Journal of the Royal Statisticol Society, 52:pp. 393-

442, 1990.

260



[70] W. H. DuMouchel. Estimating the stable index a in order

to measure tail thickness: A critique. The Annals of Statistics,

11:pp. 1019-1031, 1983.

[71] J. R. M. Hosking and J. R. Wallis. Parameter and quantile

estimation of the generalized pareto distribution. Technometrics,

29, No. 3:pp. 339-349, 1987.

[72] J. A. Nelder and R. Mead. A simplex method for function

minimization. Computer Journal, 7:pp. 308-313, 1965.

[73] Gradshteyn I. S. and I. M. Ryzhik. Tables of Integrals, Series and

Products. Academic Press, NY, 1980.

[74] S. A. Kassam. Signal Detection in Non-Gaussian Noise. Springer

Verlag, NY, 1989.

[75] A. B. Martinez, P. F. Swaszek, and J. B. Thomas. Locally

optimum detection in multivariate non-gaussian noise. IEEE

Trans. on information Theory, IT-30, No. 6:pp. 815-822, 1984.

[76] J. Galambos. Asymptotic Theory of Extreme Order Statistics. Wiley,

NY, 1978.

*US GOVIUr**KWeS WT UgfgIO : 1993-710-09360293



MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 3 1) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C 31 systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.


